ENGINEERING.

MODERN FRENCH ARTILLERY.-No. I
Every great war of modern times has brought with it experience, which in the succeeding period of peace, has been utilised to revolutionise existing practice in the construction of war material. The muzzle-loading smooth bores that battered down the Russian redoubts, the cast-iron 64 -pounders which failed to make any impression on the walls of the Baltic forts, showed by their comparatively feeble performances the necessity for heavier and more destructive weapons.
Both in England and in France the defective perfornance of the artillery that was employed during the Crimean War, had stimulated inventors to produce better guns, and nearly a year before the treaty of peace was signed in Paris, on March 30, 1855, Mr. Armstrong had delivered to the Eng lish Government his first gun-a 3 -pounder-in which were embodied the elements of a system that was to revolutionise the construction of ordnance all over the world. It is claimed that Arm strong was anticipated by a French captain of artillery, Treuille de Beaulieu, and that by quite a number of years; that in 1840 this inventor proposed the adoption of rifled guns, while in 1856 he advocated the substitution of steel instead of bronze in their manufacture. It is authentic that when the siege of Sebastopol was dragging slowly on, that the French Government had recourse to him to make for them guns of greater power and range than they then had at their disposal. In compliance with these instructions, Treuille de Beaulieu manufactured, first, two field guns which it is said gave very promising results, and afterwards sixty of heavier character that were intended for the siege of Cronstadt ; the conclusion of the war, however, prevented these guns from of the war, however, prevented these guns from being put in service. But the French had occasion and De Beaulieu was kept busy making field and mountain batteries for Algeria, Kabylie, and Cochin-China; in 1857 he commenced the delivery of these batteries. France, however, cannot claim the credit of this new departure in gun construction unchallenged, since an American inventor, Daniel Treadwell, advocated somewhat similar im provements in 1840; in any case this American claim has little real practical value, because it had no practical result. The Armstrong system of manufacture, on the other hand, was embodied in the first field gun delivered to the English Government in July, 1855, about the same time that the French War Office was applying to Captain de Beaulieu. It is worth noting that this first and insignificant field-piece was made with a steel barrel reinforced with one thickness of coils from the muzzle to the trunnion end, and with three outer coils over the chamber. The Armstrong type of gun, with certain modifications and improvements suggested by experience, was rapidly adopted by the English War Department, and about 1864 3000 guns, all of small calibres, had been delivered. The heaviest natures made before that date, that is to say, between 1858 and 1862, were 110 -pounders 300 of which, all breechloaders, were manufactured for the Navy in 1861 ; these guns fired $110-\mathrm{lb}$. shot with 14 lb . of powder, although they were originally designed only as 100 -pounders. In 1864, aftor Mr, Armstrong had resigned his position as
superintendent of the Royal Gun Factory, and had started the manufacture of ordnance on what was then a large scale at Elswick, guns weighing about 25 tons were being made there, 183 in . in total length, 145.25 in . in length of bore, 13.3 in . bore, and measuring 51.5 in . in diameter over the powder chamber. These of course were very heavy guns for those days, and greatly surpassed the boldest efforts that had been attempted in French gunmaking up to the same date. At that time the " standard naval rifle gun of France, known as the "Canon de 30," was a cast-iron reinforced weapon 6.489 in . bore, weighing 8239 lb . ; it was 128 in . in length, 108.295 in . in length of bore, and 23.62 in ,
in diameter over the chamber. A cannon of " 30 " in diameter over the chamber. A cannon of " 30 "

french cast-iron reinforced aun ; 1858.

was sent to Cochin-China and took part in an engagement at Tourane; this was the first rifled gun fired in war. Fig. 1 is a section showing the construction of this gun; it will be seen that the body is a solid casting reinforced by seven steel rings 4.4 in . thick and extending from the rear of the breech nearly as far as the trunnions. These guns were rifled with three grooves of increasing pitch, commencing at nothing and ending at 1 in 30 ; they fired projectiles of 100 lb . in weight, the charge varying from 7 lb . to 8 lb . In addition to these guns, which gave very satisfactory results at the time, there were a number of $10-\mathrm{in}$. bronze smooth bores in service as well as a quantity of the old 30 -pounders, the barrels of which had been rifled. It is stated, and probably with good reason, that France at that time preferred to use a $6.5-\mathrm{in}$. cast-iron naval gun, rather than purchase
steel from England to make heavier and more effective weapons; but even then the necessity for steel ordnance was appreciated, and great efforts were being made amongst French manufacturers to produce reliable steel; how well they have succeeded in this of late years, we shall see by-and bye. Nevertheless it is worthy of note that about 1864, France was purchasing 300 -pounder guns from this country. In addition to the cast-iron reinforced muzzle-loading guns, there were manufao tured at the French arsenals, hreechloadern, the breech-closing mechanịam of Fhich was adapted
from an American system upon which six guns had been made in Boston for the British Government in 1855 ; this system was no other than the screwed plug and breech with stripped thread ; the only difference between the French and American device was that the latter was clumsy and unpracical, while in its modified shape it proved to be a very satisfactory device and embodied the principle of breechloading generally adopted to-day. A very brief review of what was done in the early days of heavy gun construction in this country and elsewhore may very properly preface what we shall have to say hereafter on French artillery, the modern history of which commences only after the Franco-German War.

Whilst the experience of the Crimean War forced upon both the English and French Governments the necessity of abandoning cast-iron guns unless, as in the case of the French type, they were heavily reinforced with steel, the American War of Secession confirmed - at least for the time - United States artillerists in their belief in cast iron for guns of large calibre whether for smooth bores or rifles. Of the latter class the one most largely used was the Parrot gun, of which 2000 were cast between the commencement of the war in 1861 and the beginning of 1864 . They were made exclusively at the West Point Foundry by the inventor, Captain Parrot, and were cast-iron guns of the ordinary form with a wrought-iron reinforcing ring over the chamber as shown in Fig. 2. A. L. Holley, speaking of this type of gun in his "Ordnance and Armour," says: "The

100 -pounder and the $8-\mathrm{in}$. and $10-\mathrm{in}$. guns are now cast hollow on Captain Rodman's principle, the advantages of which are well known. The bar of ron from which the rings are made is rectangular in shape when straight, but becomes wedge-shaped when bent into a coil, thus leaving a space for cinder to be squeezed out when the coil is upset. This feature is directly contrary and an evident improvement upon the Armstrong plan. The hoope are ahrunk on without taper, the difference in diameters being $\frac{1}{10} \mathrm{in}$. in 1 ft . They are fastened to the cart iron only by the adhesion d!e to their

2

tension, and have never been loosened during test or action. When a hoop is to be adjusted, it is heated and slipped over the breech, the gun being slightly depressed. A stream of cold water is then run into the bore, not for the purpose of cooling the hoop from the interior, but to prevent the expansion of the cast iron. The 8 -in. rifled gun has thrown spherical smooth shell filled with earth to weigh 52.5 lb ., with papier-maché sabots, at an initial velocity of 1809 ft . per second; charge 16 lb ., the same charge that fires the elongated shot of 152 lb . at 1200 ft . With a charge of 25 lb . the gun fires a $68-\mathrm{lb}$. to $70-\mathrm{lb}$. cast-iron or steel spherical shot at above 1800 ft . per second, with about the same strain and no less safety. This gun may therefore be pronounced the most formidable service gun extant. Neither the English 68-pounder nor the French naval gun (6.5 in .), nor the United States cast-iron $8-\mathrm{in}$., $9-\mathrm{in}$., or $10-\mathrm{in}$. guns can endure such charges ; the Armstrong 110-pounder (7 in .) cannot charges; the Armstrong the United States Navy ine-in. and the new English steel-lined 7 -in. and 9 -in. guns are not yet service guns. The British Government has spent (between 1859 and 1864) over 2,500,000l. on ordnance and plant, and although it has acquired a gun capable of higher charges for a few hundred rounds, and, what is more valuable, the experience which will enable it to fabricate the best steel cannon without further risk, it is still without a trustworthy naval gun or gun of position." That this encomium on the Parrot guns was somewhat highly coloured is suggested by a statement
found in an American book published by a Mr. found in an American book published by a Mr.
Wiard in 1863, who stated that work on a number of $7 \frac{1}{2}-\mathrm{in}$. cast-iron rifle guns at Westpoint was stopped because both in experiment and in service they were proved to be unreliable; nevertheless, the fact remains that the American cast-iron guns did admirable service-far better than the cast-iron guns either in the French or English Navy ; this was chiefly due to the superior quality of the American cast irons, some of which withstood as high a tensile strength as $49,000 \mathrm{lb}$. per square inch, while the average of English gun irons did not exceed $20,000 \mathrm{lb}$. It is worth noting, however, that during the Crimean War some of the 32 -pounders and 68 -pounders fired from 2000 to 3000 rounds, and were in good condition at the end of this long service ; in the London Exhibition of 1851 several vice ; in the London exhibition of 1801 several
cast-iron guns were shown varying in size from cast-iron guns were shown varying in size from
6 -pounders to 30 -pounders; these had been cast at Liege, and had withstord from 2000 to 6000 rounds, remaining in a serviceable condition. The construction of cast-iron ordnance had in fact up to the year 1864 been developed as far as the imperfect nature of the material permitted ; the American War gave a great stimulus to the art ; guns, as formidable as it was possible to produce them, and also made very quickly and cheaply, were an absolute necessity, and since the Confederates, under the best circumstances, only owned or could produce, weapons inferior to those turned out of the Federal arsenals and private factories, it mattered little, except for the protraction of the war, if ranges were short, projectiles comparatively light, and powder charges low ; the balance of advantages was still held with the northern troops, and that was all that was necessary. Nevertheless, the Parrot castiron rifle and the Rodman smooth bore, were formidable weapons; the former ranged in its natures from the 10 -pounder weighing 890 lb and costing $36 l$., to the $10-\mathrm{in}$. gun weighing $26,500 \mathrm{lb}$. and costing 9000 . The length of the former was 70 in., and of the latter 144 in., the intervening calibres having approximately relative lengths ; the powder charges varied from 1 lb . to 25 lb ., and the weight of projectile from 10 lb . to 250 lb ; the number of grooves in the $10-\mathrm{in}$. gun was 15 , the depth 10 in ., and the rifling, which was on an increasing
twist, had a maximum of one turn in 30 ft . These twist, had 2 maximum of one turn in 30 ft . These
guns were able to withstand very hard usage as experience in service amply showed; thus a 100 pounder fired a thousand rounds with $10-\mathrm{lb}$. charges and $100-\mathrm{lb}$. projectiles; at the end of this service the piece remained in perfect condition except for a slight enlargement at the bore; a 300 -pounder fired 600 rounds with maximum charges, before Charleston, and so forth. The Rodman smooth bores earned a famous reputation during the American War, and were indeed marvels of perfection, considering the material of which they were made; the principal calibres were $13 \mathrm{in} ., 15 \mathrm{in}$., and 20 in ., they were cast hollow and varied in weight from $32,000 \mathrm{lb}$. to $115,200 \mathrm{lb}$., the latter (more than 57 American tons) being the weight of
the $20-\mathrm{in}$. Columbiad. The service charge of this gun was 100 lb . and the weight of shot no less than 1000 lb ., the length of bore was 210 in. , and the maximum diameter over the chamber, 64 in . The $15-\mathrm{in}$. Columbiad, throwing a 440 lb . shot with a $50-\mathrm{lb}$. charge, was, however, the most favourite gun of this class. Both for the Army and Navy Department, the prescribed tests for the material of which these guns were made, was that they should have a tensile strength of not less than $30,000 \mathrm{lb}$. per square inch, while the condition of acceptance of per square inch, while the condition of acceptance of a number of guns, was that one, selected from each
batch, should withstand, for the smaller sizes, 1000 rounds, and for the larger calibres of $13-\mathrm{in}$. bore and upwards, 500 rounds. This reduced test was, however, accepted, for all natures, under existing circumstances, and it is stated that many of the $15-\mathrm{in}$. Rodman guns fired in actual service considerably more than the prescribed 1000 rounds that formed the test for the smaller calibres. One of the $15-\mathrm{in}$. navy guns made at this time was fired 900 times at test, with elevations varying from 0 deg. to 5 deg , and with charges increasing from 35 lb . to 70 lb ., the weight of shot being in all cases 440 lb . ; it was only after the 900 th round that this weapon failed. It was with these smooth bore Rodmans that what was probably the last naval engagement to be fought with cast-iron ordnance in the English Channel, took place between the Kearsage and the famous Confederate steamer Alabama on June 19, 1864. Long ranges, such as are attained to-day, were not dreamed of during the American War, and at a time when fighting was at comparatively close quarters was a necessity, endurance of guns, weight of metal thrown, and comparatively rapid firing, were the useful conditions. Still, remarkable practice was made with the Rodman $15-\mathrm{in}$. gun throwing $328-\mathrm{lb}$. shots with $35-\mathrm{lb}$. charges. The range obtained under these conditions, with very considerable accuracy, exceeded 2000 yards, while with $50-1 \mathrm{~b}$. charges they reached a maximum of 5730 yards; these results were obtained with spherical shot. It is worthy of note that about the same time Armstrong was producing muzzle-loading smooth bore guns 9.22 in. bore to fire $100-\mathrm{lb}$. spherical shot; with these about the same range and accuracy were obtained as were given by the Rodman cast-iron guns.
Remembering the 110 -ton guns with which our most powerful ironclads are now being armed, it is interesting to read in Holley's "Ordnance and Armour" that in 1864, "The standard cast-iron gun in England-in fact the standard naval gun
-is the 95 cwt. 68 -pounder of 8 in . diameter and is the 95 cwt . 68-pounder of 8 in . diameter and
113.9 in . in length of bore, and $26.2 \mathrm{in}$.in diameter over the chamber; its cost is about 100l. It is stated that 100 new 68 -pounders have been recently ordered on account of the failure of the Armstrong naval gun as a naval weapon. At the siege of Sebastopol the 68-pounders were on the whole very satisfactory in their range and
endurance. Only two of them burst both at high elevations, and one after having fired over 2000 rounds. Some of those landed from the Terrible fired as many as 4000 rounds, usually with 16 lb . of powder, and very rapidly."
But although the standard naval gun of England of that date was of cast iron, and although the Armstrong guns of large calibre were wrongly reported to be failures, the works at Elswick were busy in turning out heavy ordnance ; in fact, in November, 1863, a muzzle-loading gun weighing nearly 25 tons and throwing a $600-\mathrm{lb}$. shot with a $70-\mathrm{lb}$. powder charge, was completed; with an elevation of 23 deg., a range of 7200 yards and an initial velocity of 1250 ft . per second were obtained. It will thus be seen that during the eight years which had elapsed since Armstrong delivered his first 3-pounder to the British Government, the celebrated engineer and gunmaker at Elswick had made wonderful progress,
still following closely the same lines of construction on which his original gun was made, that is to say, a series of concentric tubes formed by welding together in spiral coils long lengths of rectangular iron bars. At that time the specification given the makers of the iron from which the guns were produced, prescribed an ultimate tensile strength of about 26 tons per square inch, not over 27 tons nor under 25 tons, whilst permanent set was not to take place under a strain less than 13 tons per square inch, and the effects of compression were not to become permanent under a load of less than 14 or 15 tons per square inch. At that time the greater part of the iron used at Woolwich for making this type of gun was a mixture of 85 per
cent. of Yorkshire, and of 15 per cent. of Swedish charcoal iron; it cost 20l. a ton. In 1862 the Royal Gun Factory at Woolwich could boast of a 12 -ton hammer, while Elswick possessed one weighing 10 tons; shortly after Mr. Armstrong had quitted the position of superintendent of the Gun Factory in 1863, the coiled wrought-iron inner tube was replaced at Woolwich by a steel tube tempered in oil ; it should not be forgotten, however, that the earliest successful gun-an 18 -pounder made by Armstrong-had an inner tube of steel. As we have already stated, up to the year 1863, 3000 Armstrong guns had been made for the British Government at Woolwich and at Elswick, the total cost attending this production having amounted to a total of $2,539,547 l$. All the guns that had been made up to $7-\mathrm{in}$. bore were breechloaders, the larger calibres being muzzle-loaders. The cost of these guns was from 1 s . to 1 s .5 d . a pound.
The stimulus which had been given to inventors by the Crimean War, and the brilliant success that had attended Mr. Armstrong's efforts as a maker of guns, naturally produced a plentiful crop of inventions which, with very few exceptions, have passed out of sight long ago. The one brilliant exception is that of the Whitworth gun, of which in 1863 a considerable number of pieces up to 70 -pounders had been fabricated. This manufacture has, since that date, gone on steadily progressing, with the best results, although unfortunately from various causes which it is not necessary to consider here, this country benefitted but little from the skill and energy which the late Sir Joseph Whitworth attacked the ordnance question, and later, what was even of still higher importance, the manufacture of high-class steel especially adapted for gun construction. Other nations have, however, been wise enough to take advantage of the opportunities afforded by Sir Joseph Whitworth, both for the purchase of guns and of steel for making them. Another able engineer, Mr. J. Longridge, who was very early in the field, and who still often protests against the weak points in our ordnance system, as early as 1860 advocated the adoption of coiled wire as a covering for gun tubes, and the experiments which he had even then made, gave marvellous results in the increase of strength obtained by this means of reinforcement; this system has been before the public at intervals ever since that date. Of other inventors, whose names have passed away, we may mention those of Mr. Lynall Thomas, of Captain T. A. Blakeley, who was very early in the field, in investigating and reducing to practice, the system of reinforcing guns with hoops placed under initial tension ; the Mersey Steel and Iron Company, who, in 1856, made a forged gun in one piece except the trunnion ring, 13.014 in . bore, 15 ft .10 in . long, and weighing more than 25 tons. The same firm showed in 1862 at the London Exhibition another large piece of ordnance, in which the inner tube, formed of staves welded together, was reinforced by an outer casing of plates bent around it and welded; the Mersey system of manufacture enjoyed a transient period of success, and several guns of modified designs were ordered by the British Government. Of solid forged steel guns, Krupp, of Essen, was the great representative and manufacturer, and had been so since the London Exhibition of 1851, where the first gun made by him on the system, afterwards to become famous throughout the world, was shown.

HELIOMETER AT THE CAPE OF GOOD HOPE OBSERVATORY.

A couple of years ago the Royal Observatory at the Cape of Good Hope received a most important addition to its equipment in the form of a heliometer constructed by Messrs. A. Repsold and Sons, of Hamburg. Of this instrument, which is probably the most perfect of its class yet constructed, we this week give a perspective view,
Fig. 1, on page 12, while in Figs. 2 to 5, on pages 4 and 5 , and Fig. 6 , on page 3 , we further illustrate its chief details.
In its general design the instrument under notice resembles that constructed in 1882 by the same makers for the Yale College Observatory at New Haven, Connecticut, but it is of greater optical power, its object-glass-which was made by Mr. Jakob Mertz, of Munich-being 7.5 in . in diameter, with a focal length of 102 in . Its details also include some moditications and additions desired by Dr. Gill, the Astronomer-Royal at the Cape, amongst which may be mentioned the provision of

MODERN FRENCH ARTILLERY. No. VII.

Brerchloading Mechanism-continued.
The Woolvich System.-As we have already seen, the first important departure in the construction of ordnance in this country was also characterised by the adoption of breechloading mechanism, and this practice continued until a very large number of guns had been manufactured and delivered ' to the British Government. About 1864, however, when the tendency became more marked towards the construction of larger calibres and heavier guns, a strong feeling of antagonism against breechloading was evoked, with the result that all
beyond, the breech seating is screwed, and within it works a hollow breech-block, the inward or outward movement of which is facilitated by heavy weighted levers. Within the slot before mentioned a block slides to and fro, pierced as shown to receive the fuze, and fitted in the front face with a gas check. By running the breech-screw back the block is loosened and can be lifted out of the slot, eaving a clear passage through the opening in the breech-screw to the powder chamber for the introduction of the charge. The diameter of the open-
ing in the breech-screw corresponds with that of ing in the breech-screw corresponds with that of
the powder chamber, and the faces of both screw the powder chamber, and the faces of both screw
and powder chamber are bushed as indicated in the section. So recently as 1880 a number of these guns b
done by carefully heating the trunnion ring and so slackening it, and then turning it for a quarter of a revolution to the left. The gun was then fitted with a solid breech-block ; an upper and lower gunmetal bracket was fastened to the top and bottom odges of the slot, and between these the block slides backwards and forwards, its movement in and out of the gun being adjusted by means of a spring stop worked by a small lever above. The spring stop worked by a small lever above. The
breech-block is fitted with a copper ring, and a special tin cup extractor is employed with this type of gun. Fig. 89 is a section of one form of gas check employed, in which the copper ring " in the face of the breech-block abuts against the bushing in the chamber; this bushing for calibres up to

armithona brebchloading 7-in. 82-cwt. aun ; 1862.

ARMSTRONG CONVERTED BREECHLOADING MEOHANISM.
the larger classes of ordnance were afterwards made as musale-loaders; this state of things continued for about fifteen years, at which time England remained the only power which had notlong before bandoned the systom as obsolete and undesirable. In 1880 a return was made to breechloading for all clases of guns. There are many guns still in serrice which date back as far as 1860 , and some ice which of the fairly large size of 7 in be o these are of the fairly large size of 7 -in. bore although their weight is only 82 cwt. ; these were the nominal 100 -pounders, but were afterwards known as 110 -pounders on account of their projectile having been increased in dimensions; finally they were recognised in the service as the 7-in. 82 -cwt. gun. These, together with 40 -pounders of various weights, of 20 -pounders ranging from 13 cwt . to 16 cwt ., and of 6 -pounders, 9 -pounders, and 12-pounders, complete the list of calibres manufactured in the early days, and which are still in use. Fig. 87 is a section showing the arrangement of the Armatrong breech mechanism which was employed with very satisfactory results. The breech of the gun is extended for a considerable distance to the rear of the chamber, and a slot at right angles to the axis of the bore is cut through the gun immediataly at the back of the powder chamber;
were converted into the side-closing system, which in a less satisfactcry form had been introduced by Armstrong in the early days. Fig. 88 shows the
method adopted, which was only applied to a

A GAS CHECK FOR ARMSTRONG BREECHLOADING SERVICE GUN.

7 in . is made of copper, but for the $7-\mathrm{in}$. gun it is of iron.
The annual report of the Director of Artillery and Stores for 1878 to 1879 , urged that breechlosding for heavy guns had become a necessity, owing chiefly to the increased length of bore, and it was in consequence of this report that the superintendent of the Royal Gun Factory was instructed to prepare designs for 20 -ton and 40 -ton breechloading guns. In 1879 a Special Committee of Ordnance was appointed, and one of its most important duties was to report upon the introduction of breechloading guns of heavy calibre into the service. This Committee was dissolved in 1881, by which time a considerable amount of useful work had been accomplished, and several guns of calibres ranging from 25 -pounders to 12 in . had been constructed with breechloading mechanism and tested; all these were fitted with interrupted screw breechblocks based on the French system. Experiments, which lasted for more than a year longer, confirmed the wisdom of the recommendations of the Committee on Ordnance, and in May, 1882, the definite adoption of breechloading was decided on as well as the entire abandonment of wrought iron in favour of steel ; at the same time it was also decided that cast steel jackets and hoops should take the place of coils.
The breechloading mechanism in the English service comprises a solid steel breech-block cut with six or eight segments of screwed threads-the six or eight segments of screwed threads-the
French system in short-while two methods of obturation are in use, the Elswick cup and the De Bange gas check. The cup system consists of a shallow steel cup bolted to the centre of the breech-block, which is made slightly convex, the back of the cup being flat. In the rear of the powder chamber a copper ring is inserted in such a position, that when the breech is closed by the block, the side of the cup is brought into close contact with the copper ring, and the pressure of the gas generated when the charge is fired, forces it outward and into the copper ring, and so prevents all escape of gas. Whilst this system is very effective as long as it remains in perfect order, the slightest imperfection which allows an escape of gas, soon cuts the cup to pieces, besides damaging the ring, and as the presence of any fragment of grit prevents perfectly close contact between the two parts of the abturator, it is a matter of the first importance that both cup and ring should be kept absolutely clean. After eacl round the cup should be turned upon its centre to present a fresh line of contact with the ring; neglect of this soon leads to scoring and to the temporary disablement number of 40 -pounders. The alteration consisted of the gun. It is also necessary, on account of the in bringing the slot to the right side instead of expansion of the copper ring, to provide spare cups leaving it at the top as in the old plan; this was somewhat larger in diameter after the gun has been
fired for some time ; it is an easy matter to change the cups, but quite a difficult one to replace the rings. "From these remarks it will be seen that there are serious objections to the cup system, and consequently another method is recummended by the superintendent of the Royal Gun Factory, which is known as the De Bange obturation. This after full trial was adopted in 1882 for all natures of breechloading guns."*

As we have already described in full detail the De Bange system, we may here confine ourselves to a notice of the gas check pad used in the British service, taken from the same source as the foregoing. This is made with a mixture of asbestos and grease worked into a ring and subjected to hydraulic pressure ; it is inclosed between two annular discs of tin, the outer edges of which are strengthened by steel rings. "The action of the De Bange obturator is this: when the breech-block is pushed into the gun, the spindle and the pad mounted on its inner face enter the chamber with perfect ease ; on turning the breech-screw the pad is brought into contact with its coned seat in the gun and pressed home by the travel or pitch of the screw. The bore is then perfectly closed by a species of buffer in contact all round the circumference; while the tête mobile forms a loose end to receive the force of the gas on discharge. On firing the gun the pressure acts on the steel mushroom head, and squeezes the pad against steel mushroom head, and squeezes the pad against symmetry of form and position this expansion must be radial to the axis and equal in every direction, and experience has proved that it is sufficient to prevent an escape of gas. After the pressure is removed, elasticity comes into play, and the obturator can be withdrawn from the cone by a straight pull, which can be given as soon as the screw is unlocked. The simplicity of this obturation is evident, and the system has been found perfectly effective in guns of every size; it involves little circumspection in use, and there is nothing in the gun which can ever require repair. As regards endurance, the pads are almost indestructible, except perhaps the wear of opening and closing the breech ; spare pads are provided with every gun and if necessary the old one can be easily changed by any one who has seen the operation performed. Some pads have been known to last thousands of rounds, but if the firing is rapid the wad may get softened by heat ; in this case it should be changed and thrown into cold water for a time, and it will soon be restored to its condition again. Only field guns would be liable to such rapid fire, and the work of changing a pad in a small gun can be performed in a minute. Whatever the size of the piece, guns need never be thrown out of action for want of repair as in the case of cup obturation; but the pads should be carefully handled whenever removed from the gun, for by rough treatment the metal discs may get injured.'

Figs. 90 and 91 show the modification of the French system applied by the Woolwich authorities to field guns ; the illustrations represent the breech of a 12 -pounder. The breech-block and seat are cut with six threaded segments, and the block passes through the ring A, which fits freely within a "hood" B screwed on to the outer jacket of the gun ; on the right-hand side of this hood are two ears, between which are passed the hinge of the ring, the connections being completed by a hinge bolt. When the block is turned to be free in its seat it can be drawn through the ring, but cannot be disengaged from it, on account of the stop bolt a; the block is moved to and fro by the curved handle b after it has been unlocked by lifting the cam lever c, hinged to projections on the top of the block by the pin c; the operation of unlocking is effected by turning the cam lever and block through one-sixth of a revolution. The same turning movement depresses the tail d^{\prime} of the latch d and turns it on its centre pin g, depressing the spring e, that presses against the projection f on the left-hand side of the ring. The latch d is thus freed from its recess in the hood, and after the block has been withdrawn as far as possible through the ring, the latter can be swung back clear of the bore; this latch can also be lifted, if necessary, by a loose pin passed through a small hole in the left-hand side of the through a small hole in the left-hand side of the hood. The obturator is of the De Bange pattern,
with a mushroom head attached to a stem passing with a mushroom head attached to a stem passing
through a hole drilled in the block, and secured to it at the rear. The pad is of asbestos and grease
subjected to hydraulic pressure, and between it and the face of the block are a number of thin metal
discs for packing. When the block is turned to fix it in its seat, the slight forward travel forces the pad against the mushroom head (the chamber being slightly tapered at this point) and makes a joint, which is rendered gas-tight by the pressure of the head when the gun is fired. Forward of the breech mechanism is the vent bolt D passing through the body of the gun ; it is of stcel, the hole drilled through it being .15 in . at the lower end for a length of $.415 \mathrm{in} .$, and .22 in . for the remaining distance; it is secured in place by a nut with a spring washer; this vent bolt requires to be renewed after 100 or 150 rounds.
Figs. 92 to 94 are diagrams giving an idea of the arrangement of the breechloading mechanism for 6-in. guns; the details will be understood clearly by referring to our description of the French system;
at one end of the first lever, and at the other to a block sliding in guides on the face of the breech on this block is a pivot which engages in a slot formed in the lever of the breech-block. By operating the vibrating handle the breech lever can be turned in either direction moving the block with it. Fig. 97 is an end view of the breechcosing mechanism for a 9.2 -in. gun, and is fitted on H.M.S. Im perieuse. The mechanism comprises the controlled carrier on which the block is withdrawn, or from which it is pushed home; the Stanhope lever just referred to, the safety arrangement for the percus sion lock, and the safety electric firing apparatus The controlled carrier is employed chiefly to obviate the danger of allowing so heavy a weight as the breech-block to swing freely on board ship in seaway. This carrier is supported on a bronze hanger bolted to the back of the gun and forming a complete ring, but extended below by two projections

breect biechanism for meglish field guns.

ENGLISH BREECH MECHANISA WITH CCP OBTURATION, FOR G-IN. GUNS.
it may be pointed out that the spindle on which 'to give a larger bearing to the breech-block resting the obturator cap passes through the axis of |upon it. A bronze plate attached to the end of the the breech-block, is drilled as usual to receive the breech-block forms the head of the cam lever. fuze, which is also fitted with an ohturation arrangement to prevent the discharge of gas backwards; the lever forming an extension of the end of the breech-block is carried to a height of 11 in . and terminates in a handle by which the block is pulled over to the right when it is desired to unlock it. It is removed from its seat by pulling on the handle shown in Fig. 94, and received upon the swing bracket hinged to the back of the gun; longitudinal grooves cut in the lower part of the block take their bearings upon the guides of the bracket when the block is with drawn. Of course for guns of small calibre all the operations can be performed by hand, but for larger sizes, either hydraulic or other power-gaining arrangements are necessary. One such arrangement is that illustrated in Figs. 95 and 96, and consists of a Stanhope lever worked by a vibrating handle which moves a toothed wheel by means of a double ratchet that can be thrown over to work in either direction. By this means a movement is given to one of the arms of the knuckle joint which is pivotted at the centre of the toothed wheel to the face of pulling over the lever, the winch handle is turned,
the breech. The other arm of the joint is connected
driving the wormwheel, and turning the pinion,
breech-block forms the head of the cam lever.
On the hinged bolt, to which the carrier is hung, is mounted a toothed pinion which gears into a rack recessed into the side of the breech-block; the bolt is turned by means of a worm and wheel, the former being at the end of a horizontal shaft mounted in bearings and projecting forward at an angle towards the left for the convenience of the man who turns it by means of a handle. The worm wheel on the lower end of the hinge bolt turns idly upon it unless it is set fast by a clutch that is operated by means of a small hand-screw beneath. When this clutch is thrown out the carrier swings free. There is no latch used with this arrangement, but in its place is a spring stop underneath the carrier; this is simply a spring bolt which is usually drawn back and turned out of use but when wanted, that is to say when the control device is out of gear, it is turned down, and when the carrier is swung back it drops into a recess, locking the carrier. The action of this mechanism is as follows: The breech-block having been turned to the withdrawing position and started by the driving the wormwheel, and turning the pinion,
which runs the block out by means of the rack recessed in its side; this continues until the block is clear of its seat, when, if the movement of the worm and wheel be continued, the carrier is swung round upon its hinge bolt clear of the opening in the gun. The reverse process is followed for closing the gun. The safety arrangement for percuasion firing, prevents the gun from being prematurely discharged. Before the fuze can be inserted the lock must be withdrawn, and before it can be fired the lock has to be pushed up again $s 0$ as to support the head of the fuze and bring the striker over the detonator; the end of the lock is slutted away on an incline, so that if the fuze is home it will pass over, and the insertion of the fuze, and its subsequent covering by the lock, can be partially effected by hand when the breech is be partialy effected by hand when the breech is
opened; but the block cannot be pressed so far as
slotted away ; but when the block is turned into firing position the arm rides up an inclined plane, allowing the lock its full travel. On lowering the cam lever, a slide connected with it pushes the lock home into its firing position ; this slide is actuated by the cam lever by means of a pin projecting from it engaging in a spiral groove cut in the face of the lever head. The lock engages in the slide by a lever head. The lock engages in the slide by a
spring bolt that drops into a hole in the slide; the latter is always in gear with the cam lever, so that whenever this is raised or lowered the slide is put in motion. But until the cam bed is pressed against the carrier by closing the breech, the lock does not engage in the slide, for a pin stops the hole of the slide when the breech is open, so that the lock bolt cannot drop into it. When the breech is open the ock can be moved to and fro to admit the fuze and o partially cover it, but it cannot be brought into

THE AMERICAN SOCIETY OF CIVIL ENGINEERS.

(From our New York Correspondrat.)

The first meeting of the year of this Society is one that attracts its members from all parts of the country, and is looked forward to as a special reunion. On the present occasion, many of the engineers who had been so magnificently enter tained in England last summer, found themselves again assembled, and it is very certain that many kind words were spoken and many pleasant memories recalled of the visit of the engineers to England's hospitable shores.
The report of the secretary showed on January 1, 1889, the total membership of the Society was 1243 . On January 1, 1890, the membership was as follows :

The additions during the past year to the several classes of the Society membership have been:

The decrease during the year was 36, as follows : Deaths, 21 ; resignations, 9 ; transferred, 6. The net addition during the year was 92.

The treasurer's annual report showed the receipts for the year to be $39,799.91$ dols., including balance on hand on January 1, 1889, of 6515.02 dols. The on hand on January 1,1889 , of 6515.02 dols. The
expenditures for the year were $28,875.46$ dols., the expenditures for the year were 28,875.46 dols., the
balance on hand on January 1,1889 , being $10,924.45$ dols.
The Norman medal was then awarded to Mr. Theo. Cooper for his paper on "American Railroad Bridges," and the Rowland prize to Mr. Jas. D. Schuyler for his paper on "The Construction of the Sweetwater Dam." These awards seemed to give general satisfaction, and the announcement of give general satisfaction, and the announcement of
the committees, as to their selections, was received the committees
with applause.
The Norman medal was founded in 1872 by the establishment of a fund of 1000 dols. by George H. Norman, member of the Society. It is a gold medal awarded by a Committee of Censors appointed by the Board of Direction for the paper deemed by them to be the best "contribution to engineering science, not merely relatively as compared with others presented during the same year, pared with others presented during the same year,
but as exhibiting the science, talent, or industry but as exhibiting the science, talent, or industry
displayed in the consideration of the subject treated of and for the good which may be expected to result from the discussion and the inquiry."
The Rowland prize consists of 50 dols. in cash. This is awarded by a Committee for the paper they "deem most worthy of such recognition, the preference being given to papers describing in detail accomplished works of construction, their cost and manner of execution, and the errors in cost and manner of execution, and the errors in
design and execution. This prize was established design and execution. This prize was established
by Thomas F. Rowland, member of the Society, in by Thomas F. Rowland, member of the Soc
1882 , and consisted also of 1000 dols. fund.
The papers must not have been in print before presentation, and the award in each instance is made annually. Should the Committee on the Norman medal not think any paper for that year of sufficient merit to receive the medal, the money is invested in books, and is given to the second best paper ; the next year a medal is issued. Evidently paper ; the next year a medal is iasued. Evild happen
the donor did not consider this failure could more than one year in succession, and in point of fact it has never happened since the medal was instituted, which shows that either the papers were excellent, or the Board of Censors were most appreciative.

As the constitution and by-laws of the Society
slot in the under face of the lock and limits its play. This pin is kept pressed down by a spring that is capable of being withdrawn flush with its socket by a lever, one arm of which projects in the front face of the cam lever bed when the block is at first left undisturbed by the carrier ring being
firing position ; it must be pressed forward by hand partially to cover the tube, or the bolt will not engage in the slide of the cam lever, and if this is not done the striker will not operate even when the breech is closed.
The electric firing device is so arranged that con nection is impossible until the breech is fully closed. The fuze wires are connected with a junction consisting of an ebonised lock, through which two tapering metal pins pass; these pins are about an inch apart, and project on both sides of the block. The projection on one side is to attach the fuze wires ; those on the other side fit into recesses formed in a block on the gun placed upon the top of the carrier hanger; to this block are also secured the battery terminals. The holes for the battery junction piece, but when the breech is open connection is interrupted by means of ivory plugs, which are carried on the end of a spring bolt, and by which they are forced into the terminal holes and locked fast by means of a spring. The holes are opened by a slide connected with the lock, the top of which is provided with a hook that projects above the bearings of the cam lever. When the breech-block is returned to its seat and locked, on the end of the spring bolt and pushes back the trigger. When the main lever is lowered the lock is pressed into the firing position, the spring bolt with its ivory plugs is forcad out of the terminal holes and the battery connections can be completed,
but if the fuze is not home the lock, as in the perbut if the fuze is not home the lock, as in the per-
cussion firing arrangement, remains fixed and the gun cannot be fired.*
*"Official Treatise on the Manufacture of Guns."

MODERN FRENCH ARTILLERY.

 No. VIII.Breechloading Mrchanism-continued.
in both cases, the difference in the drawings show in both cases, the difference in the drawings show- \mid of machinery, these cups frequently stand several cup is a flat-backed saucer of steel resting against the face of the breech-screw, which is slightly The Armstronty system. - We have referred in a rounded. The cup also fits accurately into a ring previous article to the Arnstrong system of obtura- of hard copper hammered into a groove in the gun, ion, known as the Elswick cup, and have given the and the pressure of the gas in the chamber forcing official opinion respecting it. Fig. 98 shows the the cup against the convex surface of the breechexact form of this cup, and besides is a section of screw effectually closes the space between the cup
hundred rounds without failure or even the necessity of putting in a new copper.

The De Bange obturator has the principal advantage that it appears to stand all the rough treatment which gunners of both services are able to bestow up it. It is not, however, elastic like the cup, and particularly in the large sizes requires great power to extract the breech. In the 68-ton

the breech mechanism of a $6-\mathrm{in}$. Armstrong gun. and the copper ring, and prevents the escape of and 110 -ton guns, forinstance, hydraulic mechanism notice either as regards the block seating locking or safety apparatus, which resemble the French or safety apparatus, which resemble the French
standard system. With modifications in detail, Fig. 69 is a section of a similar gun, the block being fitted with a De Bange obturator. With regard to their two systems the Elswick firm say: "The breech opening gear and firing arrangements are the same

The details of this mechanism call for no special powder gas. A great advantage of this form of exerting a force of about 10 tons has to be empowder gas. A great advantage of this form of exerting a force of about 10 tons has to be emobturator is that it is absolutely elastic and requires ployed to extract the breech screw."
little or no force to enter it into position in the gun Figs. 100 and 101 show the breech opening of the or to extract it. The cup, however, must be carefully 6 -in. Armstrong quick-firing gun. In this the handled, and like the Broadwell ring in a Krupp question of obturators in the usual sense of the gun, will not stand knocking about to the un- term is avoided, as the gun is used with a metallic limited extent which sometimes happens to them. cartridge case, which in itself does the obturation. Used, however, as it ought to be as a delicate piece There is also no doubt that it is an excellent form
of obturator, the gas being stopped at the very mouth of the cartridge, and leaving no fouling in the chamber, and therefore no necessity for washing out between the rounds.

The breech is closed on the interrupted screw system, and to render the closing and opening more easy and rapid, the breech-block is formed in two steps, both of which have portions of an interrupted screw on their surfaces, the threads on one step standing longitudinally opposite to the blank spaces on the other. The breech-block swings rapidly into place, and is secured by a small turning movement. The gun is fired by electricity, the mechanism for that purpose being simple and ingenious. In the base of the cartridge case is screwed an electric primer, against which an insulated steel pin, carried in the axis of the breech-block, presses. This pin is in communication with the electric
any country so far as weight is concerned. In its earliest and elementary stages the system was founded upon the crude ideas of Cavalli, and consisted of a simple wedge working to and fro in a suitably formed slot cut in the body of the gun at right angles to the bore, the wedge being held, more or less securely, in its place while the gun was fired. Of course such a mode as this soon passed out of practice. With gradual developments the mechanism assumed the form shown in Figs. 102 to 106, which may be taken as illustrating the most advanced practice in this system of breechloading for field guns. The body of the gun, to the rear of the powder chamber, is slotted out at right angles to the bore, the opening so formed having a flat face and a semicircular back, which is made with a taper, enlarging from right to left. On the top and bottom sides of the slot, ribs are formed parallel to
hole is drilled through the wedge, so that the centre coincides with the centre of the plate P recessed into the face of the wedge. When in firing position, the lower part of the vent tube fixed in the Wedge coincides exactly with the upper part screwed in the breech, and at the point of junction a copper gas check is introduced to prevent any backward discharge of gas. To the left-hand side of the wedge is bolted the guard-plate B , fastened to the wedge by the three bolts CC; one of the principal uses for this plate is to provide a bearing for the locking screw D , and for the spring fastening that prevents the screw from shaking loose while the gun is being transported. The travel of the locking screw is limited by a stop on the bearing. The screw has a right-handed thread of coarse pitch, which is cut away over half its circumference; it is 30 mounted in its bearings and in the recess formed

wires, which carry the current to fire the primer, only when the breech-block is closed, and secured by turning the lever downwards against the rear of the block. The circuit is closed and the charge fired by pulling the trigger of a pistol handle, arranged in a convenient position close to the sights. In case of the failure of the elecurical firing gear each gun is also fitted with a percussion lock; the electric primer in the base of the cartridge is replaced by a percussion primer of the
same form, and the steel pin, which in the former same form, and the steel pin, which in the former
case supplied the electrical contact, now serves as a case supplied the electrical contact, now serves as a
firing needle. The percussion firing gear also has a safety appliance to prevent the charge being fired till the breech is closed and locked. In this manner all danger of accidental discharge is avoided and complete security gained.
The Krrpp System. -From the outset, Mr. Krupp of Essen, adopted an entirely distinctive system of breech mechanism, which he followed consistently through the great and rapid development of gun manufacture, from its first application to field manufacture, from its first application to feld
artillery, to his latest achievement in monster ord-
nance-the greatest that has been yet attempted in
the rear of the slot, so that the wedge when moved to receive it in the wedge, that when it is turned in and out may be always guided with the front face with the smooth segment outward, the wedge can at right angles to the bore. Some partial screw be withdrawn, but when it is turned through half threads are tapped in the left side of the upper wall, and the breech is secured in place by means of the locking screw entering these threads. The wedge A is of such a shape that it accurately fits the slot, when the block is in position and locked; it is of the form shown in Fig. 105, a circular passage, the diameter of the loading chamber being cut through it at the right-hand end; this opening T, when the breech is withdrawn into the loading position, coincides with the bore of the gun, and forms a passage for the projectile and cartridge. When closed the wedge assumes the position shown in Fig. 103, and that part of its front face closing the powder chamber, is recessed to receive a hard steel disc P, which, with the gas-check ring, forms the abutment to receive the shock of discharge. The abutment to receive the shock of discharge. The slot Z (Fig. 103); through this the lower end of the Z (Fig. 103); through this the lower end of the upper section of the vent tubo passes, and it
forms a further guide for the wedge when it is

Fig. 106. The broadwell ring. nance-the greatest that has been yet attempted in drawn in or out. In prolongation of this tube a wedge securely; besides locking, however, ita

movement forces the face of the wedge up to the the breech can be opened, the spring has to be wedge is drawn out, these grooves force the tube	movement forces the face of the wedge up to the	the breech can be opened, the spring has to be wedge is drawn out, these grooves force the tube
edge of the powder chamber. The screw is operated		
lifted by the handle shown in Figs. 103, 104. In forward, keeping it in contact with the back of the		edge of the powder chamber. The screw is operated

by the long lever E, which is fixed to the stud the opening at the right-hand end of the wedge gas-eheck, and so prevent any dirt from entering

by a key and pin. It can be held in the locked through which the projectile and cartridge are the chaniler; as the wedge is pushed home the position by means of a flat spring attached to the introduced into the bore, slides a light brass tube tube recedes into the opening in the wedge. The cover-plate and pressing on the stud of the lock- from which studs project into grooves cut in the gas-check is one of the details which helped to ing screw projecting through the bearing; before guides at the top and bottop of the slot; as the linsure the success of the system: it is known as
the Broadwell ring, and is of the form shown in and to which the cam b is connected, g the firing Fig. 106. The inner surface is cylindrical, the outer is spherical, the centre from which it is struck corresponding with that of the bore in the plane of the forward face of the slot ; it is of course seated in a spherical recess in the chamber of the gun, and on its rear face are cut a number of concentric grooves to prevent the escape of powder gases. The vent screw W, which, as already explained, is screwed into the body of the gun, is provided at the top with a cup-shaped shield to protect the men serving the gun from any backward discharge of gas or primer fragments. The mechanism is completed by a brass cylinder S bolted to the right-hand side of the breech, and over which is fitted a leather hood that protects the mechanism from dirt. The mode of working this system will be gathered from the foregoing description of its parts.
The mechanism for guns of large calibre is very similar to the foregoing, and is illustrated by Figs. 107 to 110 . As the wedge is too heavy to move in and out by hand, the necessary power is obtained by the quick-threaded screw D partly recessed into the upper surface of the wedge and engaging in a half-nut F secured to the breech. In this case the lever R that locks and unlocks the wedge can be mounted upon the square-ended stud of the screw, and the breech opened; a check chain prevents overrunning. When loading, a light brass cylinder W can be inserted from the back through to the rear of the powder chamber; the right-hand side of the wedge is not extended far enough to allow of a circular opening as with the field-gun arrangement, but the end is hollowed to a curve corresponding with the diameter of the chamber. The wedge which is recessed to receive a gas-check plate, is drilled through, as shown, for the friction primer (Fig. 110), provided with an obturating device, but which has no special features; the aring rod is finished inside the primer with a tapering stop, and when the lanyard is pulled the stop enters a countersink in the hase of the primer case and checks any backward discharge of gas
In future articles of this series we shall speak in considersble detail of the Hotchkiss system, which although essentially American, has found a great and successful field in France, and has in fact become nationalised there. In the Hotchkiss factory at St. Denis two types of guns are manufac tured ; the revolving cannon and the quick-firing gun. The latter is also largely made by the Clswick firm, and it forms the chief armament of its class in the French Navy. It is, in all its calibres, up to 10 centimetres, a breechloading gun on the sliding wedge system. Unlike Krupp, however, the movement of the block is vertical instead of being lateral. Figs. 111 to 114 illustrate the system quite clearly ; from these views it will be seen that the breech of the gun is slotted, the face next the chamber being vertical and the rear face tapered. Within this slot slides a block, the top of which is recessed and the body made hollow for the firing device; the face of the sliding block carries a plate perforated for the passage of the striker. On one side of the sliding block a stud projects through the body of the gun, and on this is mounted a two-armed lever, outside the gun, and a lever with a stud at the end within the slot, the block being cut away to make room for it ; the stud works in a curved path cut in the block, while the latter is limited in its up-and-down travel by means of a recess on the left-hand side, in which works the end of a screw as shown. By turning the handle of the operating lever in one direction the block is run down by the action of the stud in the cam path, until the recessed top coincides with the bore and a new cartridge can be inserted; the motion of the lever is then reversed and the block is raised, and held in position by the lever being pulled past the vertical and also by being held with a spring catch. The movement of lowering the block cocks the hammer, which is liberated by the firing trigger on the pistol handle. The extractor is operated by the end of its lever working in a curved slot that gives the requisite withdrawing motior.

Before terminating these descriptions of breech mechanisms, we may refer to that adopted by Nordenfelt for quick-firing guns, and which is represented in Figs. 115 and 116. The arrangement is remarkable for simplicity and the small number of parts, there being only ten in all. The principal pieces are the firing handle a, the action cam b, the preces are the firing hande a, the action cam b, the breech-block c, the wedge d, the extractor e; of the
remainder f is the pin in one with the firing handle,
pin, h the spring, and i the trigger ; the last three being housed in the breech-block; k 'is the pin of the wedge fitting in the slot of the cam. The path of this slot is at first nearly straight, the remainder being curved to the radius of the firing handle. The wedge has a rising and falling movement in the slot l of the gun, and the upper face, as well as that of the wedge, is curved to fit on a correspondingly curved seat m at the rear of the gun ; the top of the wedge is also curved, and on its front side is projection 14, that takes its bearing in a recess in the breech. The action of the mechanism is follows. Assuming the gun to have been fired, the handle is thrown back through onethird of a revolution, drawing the wedge pin up the curred part of the slot in the cam b, into the straight path, and as the movement is continued, the wedge is forced down, the angle o in the hollow part of the wedge coming in contact with the proection i of the trigger and throwing it back; before orward by the downward movement, and the main spring is compressed ; the extractor cam lever has also actuated the extractor, forcing it back and started the cartridge case from the chamber. As soon as the wedge pin has reached the end of the slots in the cam, this continued movement of the firing handle sets up a downward motion of the wedge and block, which continues until the handle has reached its extreme travel, when the position of the various parts is as shown in Fig. 116, the last motion of the extractor lever being a sudden one that throws out the cartridge case.
A new cartridge may now be introduced into the gun, and the firing handle pulled forward; the rising wedge and block push the cartridge home, and the movement continuing, the trigger is pushed up until the hammer is started and the gun fired. The inclined face within the wedge prevents the firing pin from striking the cap of the cartridge until the wedge is quite home, and abuts firmly against the back of the slot; if the trigger is pulled premsturely the lugs on the firing pin strike against the inturely the lugs on the firing pinstrixe against the in-
clined face of the wedge and the cap is not touched.

VICIORIAN GOLDFIELDS.

Sandhurst.

(By our Special Correspondents.)
(Continued frons page 162.)
That some of the Sandhurst people have learned to mine and crush quartz economically is beyond dispute; in fact, in a few cases, the mine records re astonishing, and point a most useful lesson to miners and millmen all over the world. The St.
Mungo Mine at Eaglehawk being notably one of this class, some particulars concerning its work for the past half-year supply the lesson. The quartz in this mine is not in a defined lode, the western wall is the only one marked; the eastern wall is entirely broken up; from 600 ft . to 800 ft . the deposit is almost vertical, then it underlies west. The quartz is nearly pure white, intersected by bands of slate, and both show pyrites but little or no gold, the width of the deposit varies from 3 ft . to 35 ft .; a general fair average would be alout 14 ft , and of this only about 6 ft . is put through the battery, the remainder being barren bands of rock. For $5 \frac{1}{2}$ years this mine has worked on quartz giring a yield of under 5 dwt. of gold to the ton; on this return some $28,000 l$. has been paid in dividends; the machinery has been kept in thorough repair, and the mine properly worked and developed. Dusing the last six months the main shaft has been sunk and timbered $74 \mathrm{ft} ., 143 \mathrm{ft}$. of winzes made and
timbered, and 210 ft . of drives, making a total of 427 ft . of ground sunk and driven. From all parts of the mine-including the lower levels, over 1200 ft . deep-10,190 tons of quartz have been raised and crushed, giving a return of 1851 oz . 17 dwt. of gold ; 66 tons of pyrites were collected and gave a return of 144 oz .9 dwt ., or altogether a total of 1996 oz .6 dwt., being an average of 3 dwt. 22 grains of gold per ton of ore mined and crushed. The following statement of receipts and expenditure show the dividend from this return :

Balance Sheet.
To Capital $\begin{gathered}\text { shares at } \\ \text { at } \\ \text { at } \\ 1 l\end{gathered}$

perty
Machinery and
$\begin{array}{ll}\text { plant } & \text {.. 11,309 } \\ \text { pachnery }\end{array}$

In this mine, as in almost all others on the field it necessary to do a lot of timbering and to fill up the worked-out portions as the mining progresses. With this in view nothing but cushing stuff is sent to the surface, the "mullock" or rock intersecting and inclosing the quartz vein is picked out below and left for filling, and in addition large quantities of " mullock" sent to the surface from workings some years back are returned underground together with tailings and the whole carefully packed into the cavities made by remoring the quartz lode. In very many mines the soundness of the country rock is such as not to require filling to prevent the ground falling in, but it is invariably filled up all the same, for this reason: In working quartz in large cavities it would be necensary to employ staging to raise the miners up to the roof; when shots are fired in the quartz many large loose pieces do not fall down with the bulk of the quartz shifted, and would be most dangerous and apt to fall on the heads of the workmen as they were again fixing their staging to resume work, therefore, as in this class of mining almost all the ground is worked upwards, it is considered most adrantageous and less hazardous to fill in the ground below as it is taken out, never leaving a greater space between the filling and the top of the roof than about 6 ft . this timbering in loose ground before filling, and subsequent filling in of all cavities, is by no means the least expensive and troublesome part of the mining work

I omitted to take particulars of the winding machinery on the St. Mungo Mine; but, the crushing plant is as follows: A 30 -head stamper battery by Roberts and Sons, Sandhurst, stamps $9 \frac{1}{2}$ cwt. each, crushing the ore to pass through screens with 144 holes to the square inch-by the way, this is the manner in which the Sandhurst mill men know the size of the gratings they use ; they do not use mesh screens, and they do not know the sizes of the holes in the punched plates they use by a corresponding size in mesh screens or by numbers. The pulp from this mill passes over about 12 ft . of amalgamated plates, from which it travels over about the same length of blanket strips, into a "Halley" shaking table, one for each five head of stamps, and then into a sump from whence it is lifted about 30 ft . in height into a shoot running it to the tailing heaps. Once on the tailing heaps it ceases to be of any value to the mineowners, excepting in this way For the labour of keeping the tailing heaps trim and preventing their flowing or slipping on to other people's property, the right is given to Chinese
labourers to take out of the tailings all gold, labourers to take out of the tailings all gold,
amalgam, floured mercury, or pyrites or other contents they can save by their crude and laborious methods of hand labour. The Chinaman works on the pyrites heap on the flowing stream coming from the shoot before the sand loses the momentum it gains from the stream of water; he passes it through long boxes with small pieces of battens nailed cross wise, known locally as "slips" or "ties ;" these catch the heavier particles as they gradually fall to the bottom from out of the current of water as it loses its force, he runs it over long trays with canvas laid on the surface and then over tray covered with blankets, after that it may settle where it will on the heap and no longer is of value to any one; indeed the tailings have become a positive nuisance, and the tailing and sludge questions promise before long to become one of the hard nuts which has to be cracked by both miners, legislators, and others interested. Three Cornish boilers 28 ft . long by 6 ft . 6 in .
with Galloway's tubes, supply the steam to an

In the finished pier there is a notable difference in the "skin" of the concrete above and below the tide level, the surface not being so hard in the upper part. Below the water level the concrete assumes an extremely hard surface, and its power to resist very severe attrition has been severely tried by the prolonged action of the large sharp lumps of slag rubble being thrown against it by the lumps of slag rubble being thrown against it by the
sea; this it has resisted remarkaby well. Above sea; this it has resisted remarkaby well. Above
the water, on the other hand, after lengthened exposure to the air, the skin assumes a white colour and is much less satisfactory than similar work executed with Portland cement; only the skin is so affected however, an inch below there is no difference below and above water. In an exposed situation with frequent storms, the concrete has proved itself to possess a high power of resisting the destructive action of storm waves while ing the destructive action of storm waves while
still fresh. Frequently, as in all such works, the work has been assailed by severe storms within twenty-four hours after completion, and it has passed through all these (sometimes of several days' duration) without any injury whatever, even though -as in some cases-the temporary timber framing was carried away.
The results attendant upon the use of slag cement in these works have so far proved successful, and some of the concrete has now been two and a half years in place. Probably nothing less than ten years' actual experience can be accepted in settlement of so important a question as that of the actual action of sea-water upon a new and previously untried cement, but it will be seen that the results of the experience here and of the investigations which have been made are of a satiafactory kind so far as they have gone.
The engineer for the harbour works is Mr. William Kidd, Assoc. M. Inst. C.E., by whom they were designed, and they are being executed by the company's staff under his personal direction. Mr. P. J. Messent, M. Inst. C.E., Tynemouth, was consulted in finally determining the direction of the outer portions of the piers and the form of the entrance.

MODERN FRENCH ARTILLERY.

 No. X.Thr St. Chamond Woris.
Some time since (see Enginkering. vol. xlviii., page 297) we gave some detailed particulars of the works belonging to the Compagnie des Hauts Fourneaux, Forges et Aciéries de la Marine et des Chemins de Fer, known generally as the works of St. Chamond. We need only therefore repeat as briefly as possible a few facts connected with its history and importance. The group of great establishments amalgamated into a single company, whose principal offices are at St. Chamond, forms one of the principal centres of the iron and steel industries in the basin of the Loire. (See Fig. 117.)

The works were started at Rive-de-Gier by MM. Petin and Gaudet between 1837 and 1842, and these were supplemented by other works at St. Chamond in 1852. Two years later the undertaking was changed into a company with a capital of $22,500,000$ francs, when the steel and iron works of Assailly, the iron works of Lorette and Persan, and the charcoal iron blast furnaces of Clavierres and of Toga were added. At various intervals since 1854, further extensions were made and modifications effected; the society was converted into a
limited company with a capital of $13,000,000$ francs afterwards raised to $20,000,000$ francs; blast furnaces and iron works at Givors were established, coal mines were acquired at Unieux, forests purBoucau, on the A, and new works were starto at carriage of the enormous quantities of Spanish ores that the company were obliged to make use of that the company were obliged to make use of
every year. Naturally each of these various establishments, which in all employ 6000 men, has its speciality. Thus rails and metallic permanent way are made at Boucau, the Bilbao and Bidassao ores being wholly employed; the output of steel rails is
about 70,000 tons a year. Other railway material about 70,000 tons a year. Other railway material
is made at St. Chamond, Rive-de-Gier, and Assailly; carriage and engine tyres and steel frames being manufactured at St. Chamond, wheel bodies at Rive-de-Gier, and springs at Assailly. Steel ship-plates, beams, and angles are produced at St. Chamond and Boucau ; at the former branch charcoal iron plates for ship works are also turned out in large quantities, while the manufacture of steel angles, T's, and special sections belongs to Boucau. steel forgings for ship construction are made at
and jackets from 100 lb . to 50 tons of finished work, the rough ingots being of course at least double this weight. The work of annealing and tempering such large masses, involves the necessity of special plant, and as both these operations are carried out vertically, furnaces nearly 80 ft . in height, and tanks of the same depth, are required ; there are three of these great installations at $S t$. there are three of these great instaliations at st.
Chamond ; the tanks being connected together, and requiring for one operation about 6000 cubic feet of oil. Fig. 118 gives some idea of the furnace and tempering pit, which are combined in the same building.

The general conditions under which the steel is inanufactured to enable it to pass the very stingent specification of the French Government, are generally as follows, though it should be mentioned that the requirements of the War Department have, this year, been made somewhat more stringent. The mean cross-section of the ingot must be at least four times greater than that of the forged ingot before turning; the weight of the forged piece is never more than 50 per cent., and is often only 40 per cent. of the weight of the ingot employed. The ultimate tensile strength

St. Chamond and Rive-de-Gier, the former branch having a 100 -ton, and the latter a 35 -ton hammer. It was there that a number of $\mathbf{1 5}$-ton screw shafts, with three cranks, made in a single piece, were turned out at St. Chamond. War material-tubes, rings, jackets, armour plates, and to a smaller extent, finished guns-constitute a large part of the company's industry, St Chamond being one of the few works from which the French Government purchases steel parts, which are put together at the State arsenals. The ingots from which the various pieces are made, are produced at Givors and at Boucau, whence they are sent to St. Chamond for completion. We shall have occasion to consider later on, the manufacture of armour plates by this firm, but for the present we shall confine ourselves to the steel used for guns, and the objects produced. The pig irons from which the steel ingots are made for gun construction, are very carefully made and selected; those produced in the blast furnaces of Givors are from oxydulated magnetic Sardinian ore, mixed with selected ores from Spain and Algeria; the mines of Bibao and
Bidassao furnish the ores for the blast furnaces at Bidassao furnish the ores for the blast furnaces at
Boucau. The pig iron employed contains on an average one ten-thousandth part of sulphur, and less than this proportion of phosphorus. All steel is made in the Siemens-Martin furnace ; the plant is sufficiently extensive to produce and handle ingots of 100 tons, the subsequent appliances for scale, while a range of steam hammers from 10 to 100 tons are employed for dealing with gun tubes
of the steel before tempering varies, according to circumstances, from 25.40 to 38.09 tons per squareinch, with a minimum extension of 18 per cent. ; after tempering, the tensile strength must amount to from 34.28 to 50.79 tons, with an elongation of from 12 to 14 per cent. These results must be obtained from test bars cut out of discs removed from each end of the steel block at right angles to its axis. Before these tests are made, a number of experiments are carried out with the steel, which, indeed, is tested at every stage, commencing with the selection of the ores, and continuing with analyses of the pig ; tests-physical and chemical-of the crude ingots, and the final tests of the finished block. The reinforcing rings for large ordnance and field guns are made of cast or puddled steel, the latter being produced at Saint Chamond from charcoal pig made at the Corsican Iron Works of Toga, which belong to the company. Rings for naval ordnance are almost exclusively of cast steel ; they are rolled in a manner analogous to railway tyres, and are tested with the same minute precaution as the gun tubes. Steelframed carriages for all calibres are also made by the company, and the production of chrome-steel the company, and the production of chrome-stel shells is a speciality, shared also by the Holtzer, st.
Etienne, St. Marrel, Chatillon et Commentry, and the Firminy Works.
It was as long ago as 1848 that the St. Chamond Works first commenced the delivery of guns to the French Government ; these were, of course, cast iron, and of small calibre, but since that date the production of ordnance and war material has been continued with constant development, and always
keeping to the front of the industry in France; we have mentioned in a previous article the famous 24 centimetre steel gun "Jeanne-Marie," made of steel supplied by this firm in 1864, and which did such good service at Mont Valerien during the siege of Paris. With improvement in manufacture came an increase in the power of production, until the works have arrived at their present proportions which are ample enough to turn out all classes of finished arms, from the repeating rifle of the Daudeteau type, to the large guns of 16.54 in . bore. The extent and completeness of the various installations enable the company to include and to follow all the successive stages of manufacture from the mine to the trial grounds, without having to apply to any other manufacturer for material or processes that enter into the production of the various elements enter into the production of the various elements
of which modern artillery is composed. For this of which modern artillery is composed. For this
reason, no less than for the skill and care that are reason, no leas than for the skill and care that are
introduced into every branch of the manufacture, the St. Chamond Company enjoys a high and welldeserved reputation among the industrial works of France. The following list comprises the various classes of guns and parts of guns manufactured by the company :

Repeating rifles. Quick-firing guns.
 Quick-firing guns.

Field guns.
Siege and garrison guns.
Coast defence and naval ordnance.
As the St. Chamond Works were among the earliest to supply the French Government with cast-iron guns, they also claim to have taken the lead in the manufacture of steel for modern artillery in 1864 , when the old cast-iron ordnance was syste matically being strengthened, they furnished, from the Assailly branch, large quantities of tubes and hoops for the purpose. Even so early as 1865 they were producing steel parts for naval guns of 5.51 in., 6.29 in., 7.47 in., and even 9.45 in., and it was one of the last named guns which, during the siege of Paris, did excellent service at Mont Valerien. They were also one of the first French companies to make guns for foreign customers, as soon as the prohibitory law was removed, which had done so much to cripple home industry and to giv every advantage to English and German makers.
We are indebted to our contemporary, the Genie Civil, for the following paragraphs on the history of the company since 1880 . In that year it received from Mexico an order for sixteen batteries of field guns and eight batteries of mountain guns to be delivered with carriages, caissons, ammunitions, and accessories complete, and ready for action these guns and carriages were of the De Bange system, as adopted by the French Government. This order arrived while the prohibitive law was still in force, and it was partly in order to prevent the order from falling into foreign hands, that the Government conceded the necessary privileges that have since had such important results. As a necessary consequence the company made every effort to extend its trade for war material abruad, with signal success. In 1885 the Anciens Etablissements Cail with which to a certain extent it was associated, ob-
tained from the Servian Government an order for tained from the Servian Government an order for De Bange French system. The St. Chamond Com pany shared this contract so far as the manufacture of the material was concerned, as well as the entire completion of one-third the order ; the Cail Company finishing the other two-thirds with the materia supplied from St. Chamond. The French Government also, despite its conservative system, of making all its guns at its own factories, while it is dependent for steel upon private makers was compelled to lean upon St. Chamond, and when the pressure of military necessities was felt during the Tonquin compaign, it gave the company extensive orders, amongst which were sixty guns of 16 centimetres (6.29 in .) and a large number of carriages. As was to be expected, and as had been the case with the Cail Company, St. Chamond did not long confine itself to the execution of standard guns, whether of French or foreign types; in 1880, M. Darmancier, the engineer in charge of the ordnance department of St. Chamond, perfected a new type of carriage for reduced embrasures, and this, after having been tested at the fort of Giromagny by a Government commission, was adopted as a standard type, and an order for sixty such carriages was given to the company for placing in the forts and armoured casemstes that were at
that time being built by the French military engineers. A short time after, M. Darmancier invented a new form of hydraulic brake, and after some years of experiment, it was finally adopted by the company for all their siege guns of 6.10 in . and 4.72 in. bore ; this artangement, known as the St. Chamond brake, has been largely introduced in France, where no less than 1800 guns are mounted on carriages fittod with the brake, and a considerable number have been supplied to foreign powers. A further modification of this system, for bringing the gun back to firing position, found a useful application for barbette and minimum embrasure mountings. In other directions, such as the construction of rifled mortars, modified types of mountain guns, in which weights were reduced and recoil practically avoided, without reducing the efficiency of the gun, the able director of the St. Chamond gun factory has made some remarkable experiments for developing the construction of heavy ordnance, and the guns of large calibre to be manufactured by the firm will now be designed upon what is called the Darmancier system. By this system it is claimed that longitudinal and transverse strength is fully secured, while the mode of connecting the various cured, While the mode of connecting the various
parts is effective and practical. The interior tube, which is made of steel sufficiently hard to resist, as far as possible, the erosive action of the powder and the shearing strain of the projectiles, is surrounded by one or two rows of hoops in the ordinary way ; it is then reinforced by a series of longitudinal stee beyond the trunnions, or in some cases extending for the full length of the gun ; these staves are locked into the hoops at each end, and form a complete envelope. Over this again are placed more hoops in one or two tiers according to the size of the gun.
The quick-firing guns made by the St. Chamond Company are on a system invented jointly by M. Daudeteau and M. Darmancier, which has the following characteristic features. The closing of the breech is effected by means of a block with interrupted threads, but of a light section; the De Bange obturator is generally employed, and the metallic cartridge case is replaced by a charge in a canras bag. The breech is opened and closed by a simple mechanical device, for which considerable rapidity of action is claimed, and which will be described in detail later on. The calibres of this type made by the company are $1.46 \mathrm{in} ., 1.85 \mathrm{in}$. 2.24 in., 3.94 in., 4.72 in., and 6.10 in. ; they are in two classes, light and heavy, the former giving an initial velocity of 1640 ft . per second, and the latter more than 2000 ft ., the same kind of ammunition being used with both. The standard 1.85 in . gun is adapted for the metallic cartridge of the French marine; it is 45 calibres in length of bore, and fires a projectile of 3.38 lb . with a velucity of 2030 ft . per second. The breech-block is carried on a bracket, which can be lowered against the breech of the gun, and is operated by a hand ring, which is noved to and fro for opening and closing a afety bolt that prevents the hammer from striking the fuze till the gun is completely closed, and two extractors are employed for moving the cartridge ; the sighting arrangements present no speciality. The gun may be mounted on any type of carriage in its simplest form the latter consists of a cradle with trunnion brackets, the pivot resting in a socket which forms part of the fixed stand. By this arrangement the gun can be trained to any desired angle of the horizon. The cartridge holders are made to contain a number of rounds, and are fitted with springs, which lift each cartridge from the holder, so that it may be quickly removed. Three classes of ammunition are fired from this gun, all of which are of the same weight (3.38 lb .) ; the steel shell 3.5 calibres long ; a large capacity shell of 4.5 calibres in length and containing a bursting charge of .77 lb . and shrapnel loaded with 35 balls of hardened lead. The standard mountain gun made by the St. Chamond Company has a calibre of 3.15 in . ; its weight, including the breech mechanism, is 273 lb . It throws a projectile of 12.32 lb . With a velocity of 1000 ft . per second, representing a striking energy of 212 metric tons per ton weight of gun. The piece consists of two sections, which can be connected by means of an interrupted screw thread and nut, a metallic packing being introduced to secure absolute tightness, while safety wedges are also used to prevent either of the sections from slipping on the other when the gun is fired. The De Bange system of breech closing is adopted, the proportions
corresponding to the standard in the French service. The carriage can be divided into four parts ; the body, the frame carrying the trunnions, and the axle; the hydraulic brake and the two wheels. The body of the carriage is made of thin steel plate and the elevating gear is bolted to it ; the frame, in bearings on the top of which the trunnions of the gun rest, is supported on the axle of the carriage, and is free to oscillate upon it. This oscillation after each discharge is controlled by the brake mechanism, which by a reaction device brings the gun back again to firing position. The system of brake is one patented by the company. The body of the carriage and the axle casing are connected by means of keys; the brake is fixed at one end to the lower part of the gun frame, and to the body of the carriage also, by keys. This arrangement of securing the various parts together is therefore very simple, and the whole operation of mounting or dismounting the piece can be completed in one minute by trained men. At ordinary angles of firing the amount of recoil is limited to a few centimetres; the width of wheel-base, and the efficiency of the brake, however, keep the piece always steady under fire. The heaviest weight of any single part of this artillery is 137 lb . (that of each gun section), so that for mule transport no difficulty is effected. The 3.15 in. mountain gun throws four classes of projectiles, all of the same weight- 12.3 lb . Conmon cast-iron shell ; shells with large bursting charge2.62 lb . -and 4.5 calibres in length ; shrapnel, filled with steel balls and case shot. We must reserve for a further article particulars of the war material made by the St. Chamond Company ; it is to be regretted that the data available are somewhat meagre.

OIL-TESTING MACHINE.

The oil-testing machine shown by the Eastern Railway Company of France at the late Paris Exhibition, is designed to determine the lubricating power of different oils employed for railway axle-boxes and the journals of shafts. The arrangements of the machine permit the trials to be made under various conditions, so as to reproduce as nearly as possible the conditions of actual practice, at least in regard to the nature and dimensions of the surfaces in contact, the method of applying the lubricant, the intensity of the pressure, and the speed of the rubbing surface. The machine is further provided with appliances for lowering the temperature of the rubbing surfaces and the oil, when desired, for the purpose of extending the scope of the researches which can be made by its aid.
The lubricating power of an oil being, at a given pressure and speed, inversely proportional to the tangential resistance developed at the circumference of the shaft to which it is applied, the machine is constructed to automatically register a quantity which is proportionsl to this resistance. This quantity, multiplied by a constant resulting from the particular construction of the machine, gives the total value of the frictional force, and by dividing this by the pressure exercised upon the urface of contact, there is obtained the coefficient of friction, that is, the characteristic of the oil under the conditions of the trial.
The machine consists of a shaft A (Fig. 1) of the same quality and make as the axles of the rolling stock of the railway. It is carried by two ournals in two bearings B B', fixed on cast-iron frames C C' bolted to a foundation plate D. The shaft A has in its centre a journal F turned exactly o the same dimensions as the axle neck. Upon this bearing is placed a bearing G, held between axle-box bearings of corresponding dimensions. The shaft A is pierced axially with a hole 1 in . in diameter, for the passage of water, which can be sent through it at various speeds and quantities. The oil to be tested is placed underneath the journal F in the reservoir E, as in certain types of axle-boxes, and serves to supply a greasing pad. Fast and loose pulleys $H H^{\prime}$ and $I I$ serve to drive Fast and loose pulleys $H H^{\prime}$ and I 1 serve to drive meter than their fellows, in order to relax the belts when running idly. The motion is derived from a countershaft fitted with a speed cone pulley having six steps, and driven from a line shaft. When the latter is running 100 revolutions per minute the speed of the shaft A can be varied from 42.9 to 255.8 revolutions per minute with four intermediate stages. This would correspond, in the case of an axle 3.54 in . in diameter, with wheels of $35,78 \mathrm{in}$. in diameter, to a speed of 12.4 miles per

MODERN FRENCH ARTILLERY; ARMOURED TURRETS FOR COAST DEFENCE.

CONSTRUCTED BY THE ST. CHAMOND IRON AND STEEL COMPANY; LOIRE.

Abstract

Besides constructing the railway to Autofagasta, achieved, which could only be arrived at by a dis- ${ }^{\text {position in not being manufacturers of steel, so that }}$ which we learn has recently passed into the hands play of much energy, backed up by judicious and of an English company, the Mining Company has courageous expenditure. considerably improved the port of Autofagasta. A double storied pier advancing 300 ft . into the sea has been constructed to facilitate shipping and unhas been constructed to facilitate shipping and un- loading, while hydraulic cranes and all modern appliances are in use. Extensive workshops have also been established at Autofagasta which are capable of undertaking any repairs required by marine engines or railway rolling stock.

\section*{MODERN FRENOH ARTILLERY. No. XI.}

The St. Chamond Company-continued. The ordnance proposed by the St. Chamond comprises two types-heary and light-for each of The supply of water at Autofagasta is so bad, the calibres from 15 centimetres (5.90 in .) to 42 centifor engines and locomotives is a most serious item at least 36 calibres in length of bore, while the light in the expenditure of the railway. To remedy this type does not exceed 30 calibres. The principal serious drawback the company has commenced points that characterise the designs of the guns works with the view of bringing water from a dis- prepared by this company, and which, it is claimed, tance of 195 miles. The supply of water which is possess special advantages, are as follows. 1. For to attain 88,000 cubic feet per twenty-four hours, is the gun, the selection of a class of steel, possessing taken from the source of the St. Pedro at 11,500 ft. ample strength and at the same time high resisting above the level of the sea. power to the abrasive action of the powder. Unlike The directors of the Huanchaca Company may the Forges et Chantiers de la Méditerranée, who well be complimented upon the results they have maintain that they occupy an especially favourable they are always able to purchase in the best market and to take advantage of every improvement in metallurgical practice, the St. Chamond Company assume that their position is peculiarly favourable because, ranking amongst the first steelmakers because, ranking amongst the ferst steelmakers of the world, they are independent of other of the world, they are independent of other manufacturers, and can always be certain of the manufacturers, and can always be certain of the quality of material they use, because it is produced in their own works. 2. The system of longitudinal reinforcing is claimed as a special advantage in construction as preventing the inner tube from shifting when in service. 3. The special details of the breechclosing mechanism are-it is maintained by the comp while the firing device is at once simple and whie the firing device is at once simple and absolutely safe. 4 . For the system of carriages employed, it is urged that it is superior to any other ype, because of its simplicity and compactness, the small use of wheels or rollers, the horizontal upper faces of the carriage, the absolute immobility of the underframe, and the perfect control of the recoil with the system of hydraulic brakes employed

by the company. The carriages for large guns for naval purposes and coast defence are of two typesthose with a central, and those with a forward pivot-the use of one or other of the types depending, amongst other reasons, on the height at which the trunnions of the gun are maintained; this level which is kept as low as possible on board ship, rises to 7 ft . or 8 ft . for fortress guns. In addition to these standard types, the company has a special form of barbette mounting with a fixed platform also adapted to coast defence.
The following are the leading classes of guns and mountings designed and made by the company : Coast defence gun, 275 millimetres (10.82 in .), and carriage with central pivot. This gun is of the usual St. Chamond pattern, and consists of a tube that extends for the whole length of the bore, one end being threaded to receive the breech-block. This tube is strengthened by a continuous row of hoops shrunk on from end to end ; it is then covered with a second row of hoops for three-quarters of its length, and above them are placed the longitudinal segments that form the jacket. Over these again is shrunk an outer row of hoops, including the trunnion ring, to cover and unite the longitudinal reinforcement, and extending as far as the second row of hoops. The breechloading mechanism is on the De Bange system, with the addition of a safety apparatus, which prevents the fuze from being inserted and the charge from being fired until the breech is quite closed. The light gun of the same bore is 30 calibres in length; its weight, including the breech mechanism, is 22 tons, and it fires a projectile weighing 517 lb . with a velocity of 1900 ft ., corresponding to an efficiency of 183 metrical tons per ton weight of gun. The mean pressure in the bore, measured at the breech, does not exceed $36,000 \mathrm{lb}$. per square inch. One type of carriage platform at the rear ; it is of steel, and is practically of the same construction as the heavy 155 -millimetre (6.10 in .) gun of 36 calibres, to be referred metre (6.10 in .) gun of 36 calibres, to be referred
to presently, with the exception of a standard 36 in . high beneath the underframe, so as to increase the height of the gun. On the working platform is placed the projectile crane, formed of a simple bent lever worked with a ratchet wheel operated by two men. This same carriage, with the platform removed, constitutes a central pivot mounting for board ship. In both types a shield made of hard steel is placed in front of the gun to protect the men serving it from the fire of machine guns.
The 200 -millimetre $(7.87 \mathrm{in}$.) light gun with Eclipse carriage is of similar construction to the 275 -millimetre gun just described; it is 30 calibres in length, and weighs complete 8.4 tons; the projectile weighs 198 lb ., and has an initial velocity of 1900 ft ., corresponding to a striking force of 183 metrical tons per ton weight of gun. The carriage on which this gun was mounted at the Paris Exhibition was of the Eclipse pattern, pivotted forward, and comprised the following features: A pair of levers in which the gun is carried, oscillating on bearings in the frame, and connected with a brake at one-third of their height ; the gun falls after firing, about 4 ft .6 in . ; an underframe carrying all the hydraulic brake mechanism, with a circular path in front, and two bearing wheels at the rear; a base provided with a roller ring and a pivot training for elevation. The range is from pivot training for elevation. The range is from
-7 deg. to +25 deg., and is effected with the - 7 deg. to +25 deg., and is effected with the being 150 deg. - is given by operating a pinion that gears into a toothed quadrant bolted to the base. This type of carriage is now being constructed at the St. Chamond Works for a foreign Government.
The heavy 155 -millimetre (6.10 in.) naval gun, 36 calibres long, was also shown at Paris, and is of the same construction as the foregoing; the inner tube, however, is only reinforced with one row of hoops before the longitudinal segments are put on, and these are then covered with a final row closing mechanism is the De Bange, with the addition of a safety bolt and percussion device. The weight of the gun complete is rather less than 5 tons (4950 kilogrammes); oue class of projectile weighs 88 lb ., and the initial velocity with this is 2300 ft . ; with a heavier class, weighing $121 \mathrm{lb} .$, a speed of 1960 ft . is obtained, corresponding to an efficiency of 201 metrical tons per ton weight of gun. The mean pressure developed in the bore ments, below $37,000 \mathrm{lb}$. per square inch, though it ments, below $37,000 \mathrm{lb}$. per square inch, though it
has been forced up to $45,500 \mathrm{lb}$. with special
charges and without any injury to the gun. This gun was mounted at the Exhibition on a cast-steel frame, the various parts of which were left rough from the mould to show the excellence of finish that has been reached in the class of work by a few of the leading manufacturers in France.* The body of the frame contains a special form of trunnion bearings permitting of any required adjustment. The carriage is not fitted with rollers, but slides on the underframe, these slides being arranged so as to reduce as far as possible the strains upon the deck of the ship. The underframe consists of two vertical and parallel steel beams, strongly of two vertical and parallel steel beams, strongly
braced together, and with sufficient space left braced together, and with sufficient space left
between them for the springs and the hydraulic main cylinders. On the outer sides of the frames are flanges, to which are bolted the small brake cylinders, the pistons of which are secured to the gun mounting. On the underside of the forward transverse beam is a circular plate bearing on the roller ring interposed between it and the bedplate ; at the rear are two wheels running on a circular path, which with the bedplate is bolted to the deck of the ship, the latter forming the fixed point or abutment. Training the gun is effected by means of gearing, the angles varying from -10 to +30 deg., and the range for horizontal training subtends an angle of 150 deg. The hydraulic brake consists of two pairs of cylinders, one of a larger diameter than the other, and both being connected by pipes; the piston rods of the smaller cylinders are, as stated above, connected to the carriage, while the larger cylinders transmit the energy of recoil to groups of Belleville springs placed between the sides of the frame. The carriage is erected so that an initial tension is always thrown on the pistons of the small cylinders suficient to hold the carriage in a fixed position, no matter what may be the inclination of the ship's deck. The ammunition for the heavy type of 155 millimetre gun is of several classes; one pro jectile, weighing 121 lb ., is fired with a velocity of 1970 ft ., another, weighing 88 lb ., has a rate of 2300 ft . The conmon 121 -1b. shell is 3.5 calibres long ; the high capacity shell, containing 22 lb . of bursting charge, is 5 calibres in length. The case shot weighs 121 lb . ; the $88-1 \mathrm{~b}$. common shell is 2.8 calibres long, and the shrapnel, also of 88 lb ., contains 620 balls.
Although the St. Chamond make a certain numbers of guns, the manufacture of ordnance takes only a secondary place in their production of war material, and of far greater importance i their manufacture of steel ingots, tubes, rings, and ther elements of guns, supplied to the French Government and put together in the State arsenals the manufacture of steel shells and that of stee armour plates. With these two last-named we shall deal on a future occasion, but in the present article we may refer in some detail to the system of armour-plated forts combined with heavy guns, which has been worked out with great completeness by the company, and is largely adopted by the French Government. We are indebted to $L e$ Genie Civil for much information on this subject.
In the work of reorganising and developing French coast defences, armour-protected forts have played a conspicuous part for many years, chiefly from the initiative taken by General Sere de Rivieres, Secretary to the Superior Council of National De fence, and Director of Military Engineering to the War Department. In 1874 this distinguished fficer established a Commission, at first under the presidency of General Cadart, and afterwards under
that of General Segretain ; Captain Mougin, since so widely known from his connection with the St. Chamond Company, was secretary at that time to General Rivieres. The active life of the Commission lasted for four years, and during this timehaving received carte blanche from the Government - a great deal of valuable work was done, and a long Gavre. In the four years, the Committoe experimented with different models of armour plates and forts, weighing 700 tons, and costing $72,000 l$. In the course of 180 meetings at the trial ground, 3166 rounds, using 21 tons of powder, were fired at

* We omitted in a previous article, when mentioning the names of thoee few firms in France who supply gun and Co of Unieux (Loire). The speciality of this eminent firm is the manufacture of chrome steel projectiles; from the works of this company, however, have been furnished steel to the Government for making more than 2000 guns calibres ranging from 75 -millimetre mountain guns to those of 16 -centimetre.
the different targets, a careful record of all results obtained being recorded; 104 tons of projectiles were fired during these experiments. During this long and important work, Captain Mougin was probably the most important figure, and the labours of the Commission had lasting results, in the form of several important military inventions which have passed largely into use in France since that date. The chief of these were the gun mountings since adopted by the St. Chamond Company ; and the armour-plated casemate, with rolled iron shields and masked circular embrasures, such as have been put in execution in the forts along the Moselle and elsewhere After the dissolution of the Commission, the appreciation of Captain Mougin's services was marked by his appointment as Chief of the Service of Ironclad Forts to the War Department. The St. Chamond Company, which took a deep interest in the experiments of the Commission at Gaivre became closely associated with Captain Mougin, and adopted his system with considerable success Referring to results recently obtained, a writer in the Geuie Civil states that during the recent experi ments in the camp of Chalons, the rolled iron plates of St. Chamond showed themselves superior to al the other types tested, as well against the shells oaded with melinite, as against the projectiles of chrome steel. In spite of the mystery with which these experiments were surrounded, the St. Cha mond Company received official notification of these results, as well as of the success obtained by ts plates, tried afterwards at the Bouchet powder factory. In this trial the plate was the only one ble to resist the attack of melinite shell, which broke up all the other competing steel targets, whether forged or cast, and tempered in lead oil, or water. More recently the Belgian Govern ment, having divided among several makers a large order for casemates intended for the protection of Liège and Namur, repeated at Brasschaet, on a larger scale, the experiments of Bouchet. The results obtained with the St. Chamond plates were so striking that the various manufacturers were instructed to employ no others. At the present time the St. Chamond Company, in addition to fourteen of these turrets it has in hand, is furnishing the armour plates of rolled iron for nine others ordered of the Gruson Company.
In its latest development, Captain Mougin's oscillating turret appears likely to attract considerable attention in a short time, as the St. Chamond Company are now engaged in completing one of these tructures, which is to be tested exhaustively at the polygon of the company at Longanaux. Figs. 119 to 123 illustrate the construction of this turret, which is so made as to oscillate around a centre connected to a platform on which the gun is mounted. In its normal position, Fig. 121, the two embrasures are concealed behind the armour ring around the dome. All the operations of training the gun both for elevation and direction, loading, \&e., are executed with the gun in this position. When all is ready for firing, the four men serving the gun tilt the turret by means of gearing, about 10 deg ., disclosing the embrasures; as soon as the gun is in firing position, but not before, the electrical firing circuit is complete, and the guns can be discharged. The guns are not mounted on carriages, but form a part of the turret itself, and the effort of recoil is utilised to throw up the turret bout 1 deg., when it strikes against spring stops. At the same time, the men serving the gun instantly restore the structure to its Eclipse position.
In the engravings, Fig. 119 is a section of the cupola in its normal Eclipse position, and Fig. 121 is a section at right angles; Fig. 122 is a plan, and Fig. 120 is a view of the turret turned on its axis so as to free the embrasures and bring the guns into firing position. Fig. 123 is a section showing the spring that takes up the action of recoil. The whole tructure being balanced, the work of operating it is comparatively slight; six men, including the fficer, can easily fire two rounds in three minutes, including the various operations of moving the cupola. This system, it is expected, will displace that of the rising and falling turret of Colonel Bussiere, an example of which has been executed by the Fives-Lille Company, and which was tested at Chalons, at the same time as an earlier type of revolving turret by Commander Mougin. The results obtained with the former were not considered satisfactory. Considerable steam power 12 or 15 horse-power) were required to drive the hydraulic machinery; the time used in raising
and lowering the turret was considerable, and for relatively long periods the turret offered a conspicuous mark to hostile fire. The men required to serve this system were more numerous, and the speed of firing was slower. We have thought it useful to describe this system of Commander Mougin, because it appears likely to be adopted practically in France.

LITERATURE.

Service Chemistry; being a Short Manual of Chemistry and its Applications in the Naral and Military Services. By VIVIAN B. Lewres, F.I.C.. F.C.S., Profersor of Chenistry, Royal Naval College, Greenwioh, Associate
of the Institution of Naval Architects, \&c. London:
W. B. Whittingham and Co.
as chemists, not intended to qualify its readers written for a special purpose. In his preface the author tells us that the limited time at the disposal of the officers of both branches of the service, over and above that required for purely professional work, renders it impossible for them to undertake any such extended course of general study as would justify the subsequent employment of technicalities without full explanation; he has therefore, as far as the limits of the book would allow, gone
fully into details of manufacture and other subjects generally considered beyond the scope of a chemical manual ; as, for instance, the chapter on gunpowder, where the manufacturing, proving, and keeping of powders are treated as fully as the chemistry of its composition and explosion.
Inasmuch as the work treats not only of explosives but likewise of fuel, drinking waters, boiler incrustation, corrosion and fouling of ships, paints, ventilation, \&cc., it seems to us that its title might advantageously have had a more comprehensive character, because the work is one calculated to be quite as useful to young engineers, and indeed to members of some other professions, as to officers passing through the Royal Naval College. If, for example, we turn to the chapter on boiler incrustation, we find there information of a most useful and necessary kind for the young engineer. It is explained how, when a natural water is boiled, there is formed on the sides and bottom of the vessel the so-called fur in a kettle or the more
serious boiler deposit ; how this deposit delays the serious boiler deposit, how this deposit delays the
boiling of the water, gives rise to burning of the boiler-plates, and how, if it be thick, the plates may become red-hot. The author is, however, incorrect in saying that should the deposit crack and allow the water to reach the red-hot plates, the rapid evolution of steam often results in explosion. A little reflection will show that the plates cannot store up sufficient heat to cause explosion. Experiment likewise confirms this.
This chapter, whilst it deals largely with matters well known to experienced engineers, must prove very instructive to the student intending to follow our profession. Inter alia, it explains why, although sea water was almost universally employed in the older forms of marine boilers, it had to give place to distilled water upon the introduction of highpressure tubular boilers, and how, notwithstanding this change, serious difficulties are still experienced from deposits, since the trouble has been only transferred from the boiler to the distilling apparatus, and so forth. The same chapter treats of incrustations from different kinds of water, causes of boiler incrustation, calcic carbonate. calcic sulphate, solubility, effect of concentration on sea water, effect of temperature and pressure on the saline constituents of sea water, formation of magnesic hydrate in marine boiler deposits, action of distilled water on boilers, waste of fuel entailed by boiler incrustation, prevention of incrustation, antiincrustators, chemical and mechanical action of antiincrustators, zinc in boilers, feed water heaters, and is altogether of a useful and practical kind, and rendered additionally valuable from the circumstance that the subjoet is one to which, as is well known, Professor Lewes has devoted special attention.

Another chapter likely to prove interesting and highly instructive to the engineering student is that on fuel. This chapter deals with fuels of different kinds, including wood, charcoal, peat, coal, liquid fuel, and gaseous fuels of different kinds, and gives comparisons of the calorific value of different kinds of fuels and their evaporative power. The author states that of late years the subject of liquid fuels has attracted great attention, and that with the dis-
covery of the Russian oilfields methods of utilising this most important source of energy are daily becoming practicable ; and that at the present time it is already in use for generating steam, both in locomotives and ships' boilers. After mentioning some of the advantages of liquid fuel it is stated that the present difficulty is cost, but that considering the enormous supplies now being obtained, a rapid reduction in price may be looked for. We may remark that to the question of cost is probably to be attributed the circumstance that liquid fue did not come into extensive use in this country for ocomotive and marine purposes some quarter of a century back, when its suitability was demonstrated at Woolwich Dockyard, at Meesrs. Field's Candle Works, Lambeth, and elsewhere, under the patent of Messrs. Wise, Field, and Aydon.
Professor Lewes tells us that from experiments ately carried out by Mr. Holden, of the Great Eastern Railway, it appears that the most effective way of using liquid fuel is to inject it into the firebox, either of locomotive or marine boilers, above a thin layer of incandescent fuel, and that when used in this way, complete combustion and almost entire absence of smoke is attained. This is what was done about a quarter of a century back, as above referred to, but we believe a firebrick slab was found preferable to the thin layer of incandescent fuel.
Another chapter likely to be of general interest is that on drinking water. This chapter deals inter alia with natural impurities and their effect upon health; sewage contamination; sources of
drinking water ; purification of water; different processes of filtering and treating water.
Whilst opinions may differ as to whether the uthor would have done well to have assumed a general knowledge of chemistry in his readers, instead of incorporating in his text the fundamental principles and facts which are more fully treated in many other books, there can be no doubt that Professor Lewes has produced a most useful and reliable text-book with valuable chapters devoted to special subjects in which is given information seldom if ever to be found in the ordinary text books of chemistry, and which cannot fail to be of great service to many students.
The index, which is a copious one evidently prepared with unusual care, is preceded by a series of upwards of 300 questions, having referenc to the subject-matter of the body of the work.

THE FERRY STEAMER "TRANSFER."
On page 287 of our forty-seventh volume we gave short account of a new ferry steamer built to carry passengers between Windsor, in Ontario, and Detroit, Michigan, in spite of the thick ice which forms between the two places in winter. We now publish on our two-page plate, and on pages 350 and 351 , detailed engravings both of the vessel and her engines.
The Transfer is designed to carry the cars of the Canada Southern Railway on to the Michigan Centra of rails on the deck, these rails being with three lines modating twenty-one of the longest eight-wheel freight modating twenty-one of the longest eight-wheel freight
cars, or tifteen passenger cars, each 56 ft . long. The boat (Fig. 1) is 280 ft . long over all and 17 ft .3 in . deep; boat (Fig. 1) is 280 ft . long over all and 17 ft 3 in. deep;
the breadth of the hull is 45 ft ., and the breadth over the guards 74 ft . 6 in . When light with coal on board the guards 74 ft .6 in . When light with coal on board she will draw 9 ft . forward and 10 it . aft; with twenty-
one loaded cars her draught will be about 11 ft . forone loaded cars her draught will be about 11 ft . for-
ward and 12 ft . aft. The Detroit river, through which the Transfer plies, is subject to serious accumuwhich the Transfer plies, is subject to serious accumu-
lations of ice. To enable the boat to break her way through them, she is formed with an exceedingly heavy bow having a vertical section like a sledge runner (Figs. 1 and 5), and strengthened by extra strong keelsons and additional bulkheads. Her
powerful engines cause the bow to ride up the ice, breaking it down and separating it to leave a lane for the passage of the vessel. To aid the ice-breaking, the paddle wheels, 27 ft .6 in . in diameter, have their wooden arms and floats encased in steel, the weight of each being 66 tons. The blows of the floats break up the pieces of ice parted by the bows. When the steamer made its first trip to Detroit on January 13, 1889, the run from the yards of the builders, the Cleveland Shipbuilding Company, Cleveland, was
made in eleven hours and twelve minutes. For an made in eleven hours and twelve minutes. For an hour and a half the speed was reduced, and for fifty miles the steamer broke her way through ice 4 in. to 6 in. thick. Her average speed in open water was twelve miles per hour, and this was only reduced to ten miles per hour through the ice.
The hull is covered with a steel deck and has a collision bulkhead forward, in addition to bulkheads between the store-room and engine-room, between the engine-room and boiler-room, between the boiler-
rom and the after engine-room, and at the end of the stern tube. Between the bulkheads belt frames occur on every sixth frame, except for 60 ft . in wake of the
frame.
In addition to the paddle wheels there is a screw propeller 9 ft .6 in . in diameter, also designed for reaking heavy ice The screw shaft is 10 in in diameter and 52 ft . long, and is inclined 2 ft 4 in . in 49 ft. ; the propeller projects 12 in . below the hull 49 ft .; the propeller projects 12 in . below the hul proper, being protected by a solid forged skag, which carries the bottom pintle of a solid forged rudder. To protect the rudder when backing in heavy ice, there is
heavy forging immediately over the rudder, and heavy forging immediately over the rudder, and extending down to its top line. This forging is covered by the outside plating of the hull, and when backing into heavy ice the rudder is put amidships and a heavy bolt inserted through the forging into the rudder frame from the deck, thereby holding the rudder rigidly in a ore-and-aft direction. The after end of this forging extends down over the after corner of the rudder to revent ice being in between the rudder and the horn. The paddle engines (Figs. 2 to 4) do not drive direct n to the paddle shaft, but communicate their motion through spur gearing. This consists of a cast-stee pinion 5 ft .4 in . in diameter, gearing into a spurwheel
16 ft in diameter and 58 in . pitch. The spurwheel is 6 ft . in diameter and 5 g in . pitch. The spurwheel is built with a cast-iron centre and arms in two pieces,
and with a rim in twelve cast-steel segments. All the teeth are machine cut. Each paddle-wheel has its own teeth are machine cut. Each padde-wheel has its own
independent engines and gear. These have each two independent engines and gear. These have each two
cylinders 28 in . in diameter by 48 in . stroke. These engines have their air pumps driven independently by beam engine (Figg. 6 and 7, page 350) with a steam cylinder 16 in . in diameter by 36 in . stroke; this drives two air pumps and four bilge pumps, while its centre column forms a jet condenser common to the two paddle engines.
The screw propeller is driven by a pair of horizontal engines (Figs. 8 and 9) having cylinders 28 in . in dia meter by 36 in. stroke, with a separate air pump driven off the end of the shaft.
There are four boilers of the rectangular firebox pattern, 11 ft .6 in . in diameter, and 16 ft . long, carry ing a working pressure of 90 lb . The aggregate grate sifece is 250 square feet, and the heating surface he ft . Along the centre line of the hull between epentor, are steam drums connected to a steam and the bunkers annidships between the boilers, ex tending the full length of the boiler room.
Every room and compartment of the hull and paddle houses is supplied with coils of pipe for steam heating. On account of the great difficulty of getting water When working in ice, this vessel is provided with ten sea cocks, located in different parts of the ship. In engine-room is a Reynolds patent heater, 42 in . in diameter, 10 ft . high, also three pairs of duplex steam pumps for fire purposes, feeding boilers, washing decks, pumping bilges, \&c.
The career of this ferry boat will be watched with a great deal of interest, and if successful will certainly must be a very fine sight to see type being built way hrough ice 6 in. thick, as if unconscions of its presence and leaving it behind her broken into fragments by the blows of her ponderous paddles.

INDUSTRIAL NOTES.

Industrial questions, in one form or another, again overshadow all other topics, social and political. The Berlin Conference, as the outcome of the German Emperor's rescripts, has been constituted. The English Government is represented by four British plenipotentiaries and by four delegates. Why this
class distinction should have been instituted is not class distinction should have been instituted is not Gorst, Mr. C. S. Scott, C.B., Sir William Houlds worth, and Mr. David Dale. The four delegates are Mr. Thomas Burt, M.P., Mr. F. Birtwistle, J.P., Mr J. W. Whymper, and Mr. J. Burnett. The selection on the whole, is a good one. Mr. Burt specifically represents the mining industry, Mr. Birtwistle the textile trades, and Mr. Burnett the engineering trades, above and beyond their general qualifications. British trade and commerce are not likely to suffer when represented by such men as those who are sent to Berlin. Whether any practical good can or cannot eventuate from the conference, in so far as British industry is concerned, it is satisfactory to know that its interests are safe in the hands of our chosen repre sentatives. The report of the conference will be looked forward to with some interest, not only on account of what may come directly from its deliberations, but on account of its indirect results.
The action taken by the London Chamber of Commerce in the endeavour to promote a board, or board of conciliation and arbitration, for dealing with labour disputes, is quietly and gradually, but steadily and surely making its way, not only in the metropolis, but also in the provinces. The outlines of its
a previous artide, the inner tube is relatively thin and is made of a very hard quality of ateel to resist an far as possible the erosive action of the powder as far as possible the erosive action of the powder
gases and the wear from the passage of projectilea. Over this tube are shrunk, one, two, or more rows of hoops, according to the size of the gun ; around the surface, which is oylindrical, is laid longitudinally a series of ateel staves, $\infty 0$ as to form a con-

Taking first the 80 -millimetre (3.15 in .) mountain gun, we find that it is designed to fulfil the same conditions necessary for easy transport as are aimed at by other makers of this class of ordnance Fig. 124 is a section of one of these guns; from this view it will be seen that it is divided into two parts connected near the trunnions by a screw joint, the union being made gas-tight by means of

aixth of a revolution, and the joint is further com pleted by means of two keys that are forced into grooves cut in the two parts forming the joint, and are attached to the gun by small chains on the trunnion ring (Figs. 127, 128). A special form of wrench which is a part of the equipment of the gun is used to screw and unscrew the two sections recessea are cut in the jacket near the breech to retain the wrench. The diameter of the powder chamber is 3.27 in., and its length 8.46 in . ; the rifling is of the regulation French type for guns of this calibre. The carriage upon which the gun is mounted is illustrated by Figs. 125 to 128 ; it consists of the following parts which are easily separable. The trail C; the swinging trunnion arms D to which are connected the axle E and its covering F; the hydraulic brake G and two wheels which are of wood with a steel boss. The trail is box-shaped, made of thin steel ; to the front end is rivetted a casting d which receives the tapered projection e on the casing that surrounds the sxle; this is fastoned to the trail of the gun by the key f. The swinging the trail of the gun by the key f. The swinging beam supporting the gun is formed of two cast-steel
levers, the distance between which is somewhat greater than the width of the trail ; these levers are connected together on the forward side by a steel

MOUNTAIN GUNS, 3.15 IN. BORE, MADE BY THE ST. CHAYOND COMIPANY.

disappearing carriage and travelling plateorm for 4.72 in. gun ; gt. chamond company.

Abstract

tinuous jacket; each of these staves is locked at copper obturating ring. The thickness of the plate and at the rear by the two bars g and h; they both onds into the in ary a considerable the hoops in such a way as to add the gun Terable amount of longitudinal strength to . The connections between this jacket and the are so arranged that in firing, a strain is to the inch

We have also described the principal natures of ordnance constructed by the St. Chamond Company, guns and their carriages somewhat more in detail, using largely as our authority the Revue d'Artillerie. inner tube is not uniform throughout its length; besides the bore being enlarged for the powder chamber, the tube, a little in advance of the junction, is turned down so that its outside diameter is reduced; over the thinner portion of the tube is shrunk a long jacket with an enlarged and projecting socket at the back ; this socket is cut with an interrupted thread, and on the jacket which reinforces the rear section of the gun, a similar screw thread is cut; the gun can thus be put together or disconnected by turning it through one- are mounted on the axle around which they are free to turn, the axle itself being held fast to the casting by means of a key shown in Fig. 125. The hydraulic brake is placed beneath the frame of the carriage; at one end it is suspended to this frame by the brackets k, but the other is articulated to the swinging levers by the pin m. The brake consists of two cylinders M and N, one placed above the other; it is the ram of the former that is attached to the levers D; the stroke of this ram is 5.27 in.; when recoil takes place the liquid is forced into

the second cylinder N, the ram of which has a elevating lever s, the upper end of which is jointed larger diameter than that of M; the stroke of this to the ring a passed around the gun. The usual piston is 1.18 in., and around its rod are placed graduations are provided for adjusting the elevaBelleville springs which take their bearing against tion to any desired angle. The firing angles the projection l of the brake and serve to bring the range from -10 deg . to +20 deg . ; the total gun back into firing position. When the gun is weight of the carriage is 440 lb .
fired it falls back as shown in Fig. 127, the lower Figs. 129 to 131 illustrate a special form of carpart of the swinging arm withdrawing the piston of riage for a 4.72 in . gun which is mounted on a

rollers e on which the carriage is traversed. Beneath this cross-beam are also placed two rods, on which are a number of Belleville springs that serve as recuperators to bring the gun back into firing position ; at the upper part there are also two other rods f that act as guides to the traverse D of the brake in its longitudinal movement, and on which also are placed Belleville springs that sorve as buffer stops in the event of the recoil being excessive. The two rollers above mentioned run on a circular way, and the crossbeams between the two longitudinal frames are attached by clips to this roller path to prevent the carriage from being overthrown when the gun is fired. The hydraulic brake is of the same type as has already been described for the above in connection with the mountain gun. It has two cylinders, in the first of which is a plunger H , and in the other (of larger diameter) is the ram I, which compresses the series of Belleville springs k that abut against the rear crossframe of the carriage; between the two cylinders is interposed a communicating pipe in which is a valve g^{1}. The maximum stroke of the ram in the large cylinder is 31.50 in . for the cylinder H , and for the cylinder I it is 9.45 in . The two brake cylinders, together with the connecting pipe, are cast in one piece of steel, and the brake is bolted to the bottom plate of the carriage. When the gun is fired it at once falls back into battery, turning upon the horizontal shaft b which is mounted on the carriage. The shaft b which is mounted on the carriage. The
ram of the cylinder H is forced back by its rods, ram of the cylinder H is forced back by its rods,
driving the liquid into the larger cylinder and raising the valve g^{1}; at the same time the Belleville springs are compressed. As soon as the recoil is completed, the valve falls back on its seat, communication is interrupted between the two

6.19-in. gun and naval carriage; st. chamond company.
the brake cylinder M and also forcing out that of N; travelling platform. As will be seen from the brake cylinders, and the gun is held down in its above the centre, the arms come in contact with illustrations, the trunnions of the gun rest in lowest or protected position. The operation of rerubber buffers attached to the trail. As soon as the bearings formed in the top of two long arms a loading is now performed, and the gun can be the effort of recoil is finished, the compressed pivotted on a shaft b which is mounted on the brought up to firing height by opening a second springs come into action and bring the gun back carriage; these arms are rectangular in section, valve, which allows the liquid to flow back into the into firing position. The stability of the carriage and are made of steel. The lower ends of the upper cylinder, thus removing the resistance is increased by the anchor q fastened to the lower levers a^{1} project below the horizontal shaft and are offered to the Belleville springs, which, in expandend of the trail. The training device for elevation attached to the two connecting-rods C C, which, at ing, force the swinging arms carrying the gun up consists of two parallel screws turning in bearings the rear part of the carriage, are connected to the into the highest position.
fixed inside the frame of the trail ; at the upper hydraulicbrake. Thecarriage is framed withtwosteel The means adopted for training the gun for a fixed inside the frame of the trail; at the upper hydraulicbrake. Thecarriage is framed withtwosteel fors of these screws is a pinion which gears beams of rectangular section connected together vation are illustrated by Figs. 129 and 130 ; it will into endless screws on a spindle actuated by the by a plate above and below, the latter being stiffened be seen that a collar is bolted round the gun near the lever r. Upon the parallel screws carrying the by a central girder, which also forms the pivot d, on breech, and that to this are attached two small pinions are two nuts, the guides of which are attached which the carriage turns. The frames are also con- trunnions. On each side of the main frame is to the inside of the trail ; these nuts are connected nected in the front by a cross-girder, which, in bolted a casting shown at K, in the centre of which by a crossbar from the centre of which springs the addition, serves the purpose of supporting the two is mounted a screw running in bearings, and having
at the upper end a wormwheel which gears into an endless screw, on the spindle of which is the handwheel V ; this arrangement is similar on each side of the carriage. On the endless screw is a nut on which a stud is attached. A connecting-rod M joins the stud on the nut, and that on the collar around the gun, and by turning the handwheel in one direction or the other, the gun is raised or one direction or the other, the gun is raised or
lowered to any desired angle. For pointing horilowered to any desired angle. For pointing horion the side of the frame, the fine adjustment being made with a pinion gearing into the circular rack upon the frame of the carriage.
The carriage on which the gun is mounted is placed on a travelling platform shown in the illustrations; on this underframe are mounted four pairs of wheels, one pair being at right angles to the other pair; on the centre of the platform is the other pair; on the centre of the platiorm is placed the pivot on which the gun-carriage works.
Both of the two pairs of wheels are of normal gauge
braced together and bolted to the circular bedplate before mentioned. As will be seen on Fig. 132, at the end of the circular bedplate is placed a toothed quadrant I; into this gears a pinion u as shown, which can be turned by a lever and ratchet; the horizontal training is effected by this arrangement. For elevation the following detail is employed : A toothed $\operatorname{arc} a$ is attached at each end of the gun, collars B being placed around the latter near the breech and being placed around the latter near the breech and
the muzzle for this purpose. Upon the side frame is mounted a handwheel V by which gearing can be operated, actuating a pinion that works with the curved rack just referred to ; a graduated arc m is placed on the side of the carriage concentric with the trunnions, and on one of the latter is fixed a pointer which indicates the angle through which the gun is being trained. The platform which in the drawing is shown anchored to the ground, is arranged for the reception of axles and wheels for convenience of transport. The weight of the

THE DAUDETEAU-DARMANCIER QUICK-FIRING GUN ; BT. CHAMOND COMPANY.
so as to travel on an ordinary railway ; and one mortar illustrated is 854 lb ; that of the carriage, pair can be lowered when going over crossings or 792 lb .; and that of the bedplate 2000 lb . The when it is desired to fire the gun. It will be seen total weight as mounted on wheels for transport is that at each angle of the platform there is a about 2 tons. The angles at which it is designed powerful screw p; before the gun is fired all of these to be fired vary from +10 to +60 deg.
screws are lowered until the heavy wooden shoes In Figs. 134 to 139 are shown the general outmounted on them take a firm bearing on the lines of a 6.19 -in. gun and carriage made by the ground and thus afford considerable stability to the St. Chamond Company. The gun is constructed on structure. The gun is lowered by the recoil through the principles usually adopted at these works, a distance of about 40 in . ; the angles of elevation and of which we have already given a general range from - 5 to +30 deg. for the 120 -millimetre idea. In the piece illustrated only one row of gun, and between $+\overline{5}$ to +45 deg. for the 155 mil hoops is shrunk over the inner tube; the lonlimetre. The weight of the carriage is 3.5 tons, gitudinal staves are then added and these are and that of the travelling platform 6.5 tons.
The mortar illustrated by Figs. 132 and 133 is trunnion ring is included. The De Bange breech 6.10 in. bore of the light type; it is mounted on a mechanism is applied to this gun, modified to the carriage without any provisions for recoil ; in fact 'French regulation pattern ; it is adapted for firing both mortar and mounting are so constructed as to percussion fuzes. The safety device is not shown form a single piece. This gun is five calibres in on the drawings, but may be generally explained as length, and the total length of bore is 45 in . It follows: A horizontal groove is cut at the back of consists of an inner steel tube reinforced with a the breech in which a bolt is free to slide and is steel jacket, and fitted with breech mechanism. constantly pressed towards the right by means of a The rifling consists of eighteen grooves of increas- spring ; in the bolt is made a central rectangular ing pitch from 2.30 deg. to 12 deg. With a slot, in which slides a box containing the striker ; charge of 3.63 lb . it throws an 88 lb . projectile this box projects from the face of the bolt and a with an initial velocity of 656 ft . The mounting spring presses it constantly towards the right. in which this gun is placed rests on a timber When the breech-block has been turned through foundation strongly braced together; upon this one-sixth of a revolution corresponding to its closed platform are bolted two curved plates C that position, the right-hand end of the bolt strikes platform are bolted two curved plates C that position, the right-hand end of the bolt strikes
serve the double purpose of holding down the gun against an inclined plane which is formed in the serve the double purpose of holding down the gun against an inclined plane which is formed in the
and acting as guides for the horizontal training. ring that carries the breech-block, and the bolt is and acting as guides for the horizontal training.
The carriage consists of that carries the breech-block, and the bolt is
Thates of steel \mathcal{A}
the vent and the fuze can be introduced. If the main lever be now thrown down, a projection upon it acts upon the box containing the striker and forces it towards the left over the fuze. The hammer which is mounted on the lever is arranged as shown in Figs. 136 to 138. A small hollow cylinder R, Fig. 136, is mounted horizontally on the lever and occupies a position beneath the vent; in this cylinder is a pin T forced always to the left by a linder is a pin T forced always to the left by a
coiled spring and having a ring r at the other end to which the firing lanyard is attached; on this pin is mounted the tail of the hammer, the head s projecting through the cylinder and the tail passing through a spiral groove cut in the cylinder. In its normal position the spring always holds the hammer away from the breech and out of line with the vent; it is only when the lanyard is pulled that the hammer can be brought upon the fuze traversing the spiral groove in the cylinder. The gun illustrated is 36 calibres in length, its total length being 19 ft .6 in ., while the weight is nearly 5 tons. The powder chamber is 6.29 in . in diameter and 49.21 in. long ; there are sixty-eight grooves varying in pitch from 1 deg. to 7 deg. The powder charge is about $47 \frac{1}{2} \mathrm{lb}$., and two classes of shell are fired with a velocity of 1970 ft . and of 2300 ft .; the former weighs 121 lb. , and the latter 88 lb . Besides these, the ammunition supplied for this gun comprises shrapnel and case shot. A section of the large capacity shell is shown in Fig. 139.
The gun is carried in a cradle of cast steel, bearing on horizontal slides in the top of the underframe, the bearing surfaces on this latter are of bronze. The under carriage, which is of the form shown in Figs. 134, 135, is of cast steel in one piece, including the brake cylinders on each side. The system of hydraulic brake is similar to that already system of hydraulic brake is similar to that already
described ; the cylinder C on each side of the cardescribed; the cylinder C on each side of the car-
riage is the smaller one of the pair forming the brake, and its ram is connected with the cradle on which the gun rests ; these cylinders are connected with the larger pair by the pipe a, and the batteries of Belleville spring that are used to store up the force of recoil and to bring the'gun back to firing position, are placed in the cylindrical recesses $\mathbf{E} \mathbf{E}$ cast in the body of the carriage. The rear of the cast in the body of the carriage. The rear of the carriage is supported by two rollers d running on a
circular path bolted to the deck of the ship, and in circular path bolted to the deck of the ship, and in
front it is carried by a ring of live coned rollers that bear upon the baseplate. Training for elevation, which ranges from -10 to +30 deg , is effected by means of a toothed arc attached to a ring passing round the gun in front of the trunnions; this arc is traversed by means of suitable gearing operated by the handwheel V. Horizontal training is regulated by a pinion gearing into a curved rack on the bedplate, movement being given to this rack on the bedplate, movem
pinion by the handwheel V^{1}.
Finally, we may mention the 1.85 in . rapid-firing gun on the Daudeteau-Darmancier system already mentioned, which is being experimentally manufactured by the St. Chamond Company ; a general view of this gun is given in Fig. 140, and the details of the mechanism are illustrated by the Figs. 141 to 144. In this gun the breech is closed with a block on which an interrupted thread is cut in three sectors, and the action required to open and close it is performed by a reciprocating movement given to the handle d. Upon the end of the breech is shrunk a steel block of the form shown in the figures, the back being curved to the arc of a circle; guides a are cut in the rear face of this block and in the end of the breech, and in these guides v slide the various parts composing the breech mechanism. These parts consist of a hollow bracket B, and the slide D at the end of which is the handle d, while the front is formed into a ring through which the end of the breech-block passes, and is held by the recess c shown in Fig. 142 ; in the breech-block are cut two spiral grooves M, and fitting into these grooves are projections that form part of the ring b. It is by means of these studs and grooves that the breechblock is caused to turn either for locking or unlocking, by moving the piece D to and fro. The form of the spiral groove is such that in drawing it towards the rear, the block is first set free and can then be withdrawn from the gun by the projection at the end taking its bearing in the recess of the ring b. While this is being done a projection H in the bracket B (Fig. 142) fits into a recess H^{\prime} and holds it fast in the proper position; but as the breech-block is withdrawn, it compresses a spring which retains H, causing it to shift clear of the recess H^{1}, and the braeket falls into the position shown in Fig. 141, bringing the breech-block with it
and leaving the chamber of the gun clear for reloading. The operation of closing the breech is the reverse of that wehave just described; when in place, the variouspartsoccupy the positionshownin Fig. 144, where it will be seen that the eccentric block L is in contact with the end of the gun. The firing mechanism is set at half-cock by the falling of the breech and bracket, and the gun may be fired by pulling the trigger R, or automatically if the block 1 is thrown over into the position shown by the dotted lines, in which case the travel of the breech block and its mountings is increased sufficiently to trip the lever G and cause it to release the detent.
In order that this latter may be raised, it must In order that this latter may be raised, it must
come opposite a recess U (Fig. 142) formed underneath the carrier D, and the striker, which is placed in the centre of the breech-block, can only be released when the block is fully secured to its seat. The extractors consist simply of two flat springs with projecting hooks placed symmetrically on each side of the block ; when the latter is in place the hooks pass over the rim of the cartridge case, which hooks pass over the rim of the cartridge case, which is afterwards withdrawn with the block. Fig. 140
illustrates one method of mounting this gun ; it also shows a cartridge-holder which facilitates rapid firing ; this holder consists simply of a light iron frame large enough to hold five rows of cartridges, ten in each row; beneath them is a spring v which forces them constantly up towards the top of the frame ready to the hand of the man serving the gun. The gun can be turned horizontally on its vertical pivot, and the training device for elevation consists of a toothed arc not shown in the engraving, but one end of which is attached to the gun near the breech into this arc gears a pinion driven by a hand friction wheel. The weight of the gun is 500 lb ., and the length of the bore is 45 calibres, the total length of the gun being $96 \frac{1}{2}$ in., including the breech mechanism ; the powder chamber is 12.44 in. long and 2.23 in . in diameter ; the rifling consists of twenty grooves cut with a pitch increasing from 30 deg . to 7 deg . The ordinary metallic cartridges of the French regulation pattern constitute the ammunition, and the powder charge is 1.7 lb .; the projectiles weigh about $3 \frac{1}{2} \mathrm{lb}$., and have an initial velocity of 2030 ft . Three kinds of projectiles are fired-steel shell, $3 \frac{1}{2}$ calibres in length, heavy bursting shell of $4 \frac{1}{2}$ calibres, and case shot containing thirty-five balls. The total weight of the complete cartridge is about 6.30 lb . However efficient this mechanism may be for quick-firing guns, it would seem that the work of handling the breech mechanism, except for very small calibres, would be extremely heavy.

NOTES FROM THE NORTH.

GLABGOW, Wedneeday. Claton Pig-Iron Market.-There was a slightly stronge ness was done in the iron warrant market. Prices, how ever, were slow to move, but the close showed a small advance on the day, that being the third day in succession to show a slight improvement. Scotch iron closed $2 \frac{1}{2} \mathrm{~d}$. per ton dearer, and Cleveland and hematite iron were, respectively, 5d. and 2sd. per ton higher in price, and th 64s. per ton respectively. The market was again firmer warrants were 5d. per ton higher than the closing quotation of the previous day, Cleveland being 3d., and hemaprovement was maintained, the buying being heavy, and the best quotations of the day ruling. Scotch warrants
closed at 51s. 9d. per ton, Cleveland at 52 s . 3d., and hematite iron at 64 se . $4 \frac{1}{2} \mathrm{~d}$. per ton. Makers' brands of iron were firmer, and a more hopeful view of the situation
prevailed. On Gartsherrie Nos. 1 and 3 and on Eglinton prevailed. On Gartsherrie Nos. 1 and 3 and on Eglinton on Monday morning part of the buoyancy being due to the fact of the previous week's withdrawals of iron from the warrant stores being the largest on record. The shipments were also reported as being large, while the reports as to the home consuniption seemed to show that there was no falling. off to any noticeable extent. Business opened strong in Scotch iron, and the price was run up
4d. per ton, but near the close there was some heavy selling, and prices lost their early gain, the close being 61s. 6nd. per ton cash buyers, which showed a decline of 2d. per ton from last week's close. Cleveland iron was very buoyant, the demand was fair, and the in blast, with the existing comparatively low stocks, had firming effect. Although the closing price, 53s., per ton cash, was 4d. under the best, quotation, still there was a gain of 9 d . per ton on the day. The closing quota-
tion for hematite iron was 64s. 6d. per ton cash, an advance of $1 \frac{1}{2} \mathrm{~d}$. on the day. At the forenoon meeting of the pig-iron warrant market yesterday selling rather preponderated, and prices generally gave way, the fluctua tions ranging up to about 3d. per ton. Still the tone was
the quotations recovered. Scotch iron closed 1d. under Monday's close, and hematite $1 \frac{1}{} \mathrm{~d}$. ; but Cleveland iron, day, being 3d. down, recovered and closed as on the previous market was depressed this forenoon. A fair amount of business in Scotch iron was done at lower prices, but Cleveland iron was without animation. Quietness wa the rule as regards hematite iron. Down to 51s. $2 \frac{1}{2} \mathrm{~d}$. per on cash was accepted for Scotch irun in the forenoon, futerne wore asing 18.42 d . cash at the close in the on cash for Cleveland iron, and 64s 11d for hemastite ron. Last week's shipments of pig iron from all Soutch ports amounted to 3809 of pig iron from al 8526 tons in the corresponding week of last year. for South America, 210 tons for India, 548 tons for Aus ralia, 130 tons for France, 230 tons for Italy, 865 tons for Germany, 490 rons for Holland, 600 tons for Belgium, 710 ons for Spain and Portugal, smaller quantities for other countries, and 5444 tons coastwise. The number of blast caraces in actual operation in 82 at this time last year. The stock of pig iron in Messrs 82 at this time last year. The stock of pig iron in afternoon stood at 835,108 tons, as compared with 846,084 tons yesterday week, thus showing for the week a decrease amounting to 10,976 tons.
Foreign and Colonial Shipments of Machinery, de. rom the Clyde.-The foreign and colonial shipments of cluded the following: Marine, sugar-crushing and othe machinery, of the value of 94891 ., chiefly for Chili, Penang and Singapore, Melbourne, Shanghai, Japan, New York, and Trinidad; blooms, slabs, billets, rails, plates, bars, and other steel goods for Japan, New York,
Baltimore, China, Melbourne, Bonibay, and Bilbao valued at 12,200l. ; pipes and other castings, sleepers tiebars, cottars and keys, plates, sheets, bars, tubes, and
miscellaneous iron manufactures, of the value of 49,4000 .
The Coal Trade. The extre demand for coals, induced
The Coal Trade.-The extra demand for coals, induced by the Fnglish colliers' strike, has now passed, and the market has returned to its normal position. In the Lanarkshire and other districts (excluding Ayrshire) the miners are working well, and the supplies of coals are o hand is moving froly ap the The top price of come down 3d, and that of ell coal sbout 6d, since this day week, but main coals maintain the former rate. The fo lowing are the prices at Glasgow Harbour to-day
 Best dross is in good demand, but lower qualities, being abundant, are rather easier in price. Household coals are now plentiful on account of the mild weather, but there is no change in wholesale prices so far. In Ayrahire the colliers are working unsatisfactorily, and for this reason the trade is quieter, and the prices are not quite
so cood as they were last week. Founders have now less so good as they were last week. Founde
difficulty in getting full supplies of coke.
Institution of Rngincers and Shipoulders in Scotland. The usual monthly meeting of this Institution was held last night-Mr. Eben. Kemp, president, in the chair Fourteen new members and graduates were elected, two of the former being life members. A very interesting The Erection of the Superstructure of the Forth Bridge," the speakers including Mr. C. P. Hogg Mr.
Henry Dyer, Mr. Charles C. Lindsay, Mr. W. Renny Watson, and the president, all of whom heartily con gratulated Mr. Biggart on the high character of the
series of papers which he had communicated to the Institution in regard to the great work in whose con struction he had been so intimately concerned. Mr Biggart made an interesting reply, in the course of
which he expressed the opinion that it was but right Which he expressed the opinion that it was but righ that such a body of engineers as were embraced in the detailed information as had been able to get such nicate to them in his papers A discussion then took place on Mr. Edward C. Peck's paper on "The Loss by Condensation and Re-evaporation in Marine Engine Cylindrrs." The speakers were: Mr. Dyer, Mr. James and the Rota' Engine"" by Mr. J. MacEwan Ross, and the ther wras on "The Delivery of Water through Copper
Wire Gauze Strainers," by Mr. John Barr, of the GlenWire Gauze Strainers," by
field Company, Kilmaraock.
Lecture on Public Lighting by Electricily.-Last Wed needay night a lecture on this subject was delivered to a meeting of the Philosophical Society of Glasgow in the rand banqueting hall of the new Municipal Buildings n George-square. The meeting was attended by a large members of the Socioty who were present by invita nion. Mr. Henry A. Mavor was the lecturer, and he had the benefit of the electric light on the premises, the primary current from his firm's central lighting the primary current from his firm's central lighting
station having a potential of about 2400 volts. The lecture was exceedingly interesting, and was extensively William Thomson, past-president of the Society, made some very approximate and valuable supplementary remarks, and on his motion a very cordial vote of thanks was awarded to Mr. Mavor for his bighly instructive
lecture.

NOTES FROM SOUTH YORKSHIRE

Sheffield, Wedneeday.

Engincers' Wuges.-The workmen engaged in the en

 fineering trades or Sheffeld are agitating for an increase as been held, when it was reported that two large firm had conceded the advance, and that others were consider ing the matter. The engineers contended that, no having had an advance for seventeen years, they are ntitied to make the present demand. They determined to hand in notices terminating on April 12 , and, whilstdeprecating a strike, resolved to cease work if the neces. deprecating a str
sity should arise.
The Application of Water-Gas to Steelmaking.-A number of gentlemen representing important steel works in arious parts of the country have visited the Leeds Forge Companys works to judge for themselves of the capa into Siemens steel. The whole charge consisting of nite tons, was completely converted into mild steel within the pace of five hours four minutes, and when tapped it was to all appearance in a more fluid and better condition than that usually obtained under ordinary producer gas. At the same time, the material is described as being much better under the new method.
Advance of Wages in the Iron and Steel Trade.-The rocountants' return submitted to a meeting of the stand Boand in Bire of the Midland Iron and Steel Wage residing, showed that on Monday, Mr. B. Helling price of iro during January and February was 7l. 18s. 4d. per ton This ascertainment entitles puddlers in this district under the sliding scale to 9d. per ton, and tonnage men tolling prices have advanced 13 s since the Day next return, and puddlers' wages are raised to 9 s . 3 d .
A New Feature in the Coke Trade. - In consequence of the recent strike in South Yorkshire, fourteen furnaces have been damped down at Frodingham, leaving only the district during the month of March. This is a serious matter for the South Yorkshire coke trade, as owing t the number of furnaces standing idle, a large quantity of ooke will be thrown on the market. There are now abou 2000 men thrown out of employment in the district of Frodingham.

NOTES FROM CLEVELAND AND THE NORTHERN COUNTIES.
 \section*{Middlresbrovar, Wedneaday.}

 The Cleveland Iron Market.-Yesterday the attendanceon 'Change was not large and the amount of business transacted was small. Prices were not quite so strong
as on the previous day. This was to some extent as on the previous day. This was to some exient quotations bolders of warrants commenced to sell pretty reely. In spite of the slight fall in prices yestarday, oowever, the tone was pretty cheerful, but buyers wer omewhat chary about entering into contracts for delivery head, and in fact very litu that lorward business wa done. It must be noted that shipments of inquiries seecially from Continental firms are more numerous than they have been for some time past. The first thing yesterday morning No. 3 g.m.b. Cleveland pig ron for prompt f.o.b. delivery was sold at 53s. per ton, but information from Glasgow showed prices in the Scotch centre rather easy, and this caused buyers here o hold off. At a later hour some purchasers were not willing to give more than 52s. 6d. for No. 3, but there were others ready to do business at 528. 9d. Towards the close of the market affairs again improved, and transbusiness at the foregoing figures, but it is believed hat if pig iron advances another shilling or two there wat if pig iron advances another shilling or two then wooked orders for several months, and many of them nust by this time have got well through their contracts. The price of grey forge iron is 538. Middlesbrough No. s warrants opened yesterday at 52 s. 9d., but close teady at $53 s$. cash buyers. To-day affairs were ques
and not much business was done. In the morning it was eported that No. 3 had changed hands at yesterday' losing figure but as the day wore on prices fell, and No. 3 g.m.b. Cleveland pig, for prompt f.o.b. delivery was at the close of the market nominally 52s. 6d., but uyers would not give that figure. Middlesbrough war pigs here ask 72 s . Gd. per ton for mixed numbers, but hematite warrants are very considerably cheaper than makers' iron.
Manufactured Iron and Stecl.-The manufactured iron ndustry continues quiet, but some makers report a rathe etter inquiry. Few, if any, new contracts, however, a producers who state that prospects are improving, but others express doubts of quotations advancing much Common bars are 71. ; ship-plates, 6l. 15s. to 71.; and angles, 6l. 151., all less the customary discount for cash In the steel trade there is very little new to report. Pro ducers, however, continue fairly active, but inquiries ary ew and new orders are very dimicult to obtain. Heav works.
Weardale Ironstone.-The inability of the Weardale Iron Company to blend satisfactorily the Weardale ironstone so as to make steel, has necessitated the building of
a special furnace at Tudhoe, which is about to be lit up

MODERN FRENCH ARTILLERY.

CONSTRUCTED BY THE ANCIENS ETABLISSEMENTS CAIL.

(For Description, see Page 449.)

Fig. 146. De Bange coast defence aun (9.45 in. calibre) mounted on carriage.

Fig. 147. De Bange 6.10 in . gun mounted on naval carriage, showing shield and brake gear.
several more soda cellulose manufactories were constructed shortly afterwards. The cost of production was disproportionately high to begin with, but was gradually lowered. The sulphite method, 'which was a Swedish invention, then became more generally used, and has no doubt a future. During the year 1889, nine new sulphite manufactories were erected in Sweden.

OONDITION OF THE SHIPBUILDING TRADE.

Snsce we last wrote on the prospects of the shipbuilding trade there has been no improvement, although we are not inclined to the belief that there has been any retrogression. Statistics, compiled from semi-official sources, show that whereas on January 1 last the number of vessels building on the Clyde, the leading shipbuilding port in the country, was 166, and the aggregate gross tonnage of these 300,000 tons, the vessels now in course of coustruction have been reduced in number to 118, construction have been reduced in number to 118 ,
while the tonnage is now 245,000 , or about the same as it was about a year ago, and a decrease in tonnage on the two months of 18.5 per cent. And it may be safely assumed that the same ratio of decrease holds good in the case of the other ports. Taking 15 per cent. as a fair average, we find that the reduction of work in the whole kingdom will be about 175,000 tons. The production has been slightly more than this, as a few-but only a fewslightly more than this, as a few-but only a few-
contracts have been booked during the two months. contracts have been booked during the two months.
Notwithstanding this apparent dulness, the contract prices of vessels do not show any appreciable decline; nor can there be any for some time. Builders generally have a large amount of work on hand, and although the men are working more regularly than at the close of the year, or even in January, it is not being executed as rapidly as contract time demands in the majority of cases. Added to the influence of in the mactivity is that of the stiff prices of steel and this activity is that of the stiff prices of steel and
other constructive materials, which have not fallen other constructive materials, whictant consideration in all departments is the enhanced market value of labour. It is true that one or two builders, who do not share the general experience of having plenty of work on hand to keep their establishments actively employed, are disposed to take rather less than was going a few months ago. A case in point than was going a few months ago. A case in poith, may be given. A shipowner had all but fixed with,
say, A. B. for a steamer two months ago. He say, A. B. for a steamer two months ago. He
subsequently desired heavier machinery, and A. B. wished an addition on the stipulated price, which the shipowner did not care to give. New specifications were issued, including heavier machinery, and a firm has secured the contract at a price 10 per cent. below the amended offer of A.B. This is an exceptional case, illustrating the desire of builders to fill empty berths when they have them, and is not an indication of a general have them, and is not an indication of a general
depreciation in contract prices. The production of depreciation in contract prices. The production of 200,000 tons for the kingdom, and may be regarded as very good, especially in view of the shortness of February. In Scotland the production has been 49 vessels of 71,920 tons for the two months, of which total the Clyde contributes 39 vessels of 57,220 tons, the largest total on record for the same two months, being 2000 tons above the total of 1882, months, being " 2000 tons above the total of 1882 ,
the previous " big" year. February was an unusually heavy month, the output in Scotland being 28 vessels of 48,388 tons, of which 25 were steamers, having engines of over 45,000 indicated horsepower. Of the total six of 14,125 tons were for Scotch owners, three of 6050 tons for English, three of 5490 tons for France, two of $\mathbf{4 2 5 0}$ tons for China, four of 3400 tons for Norway, one of 3010 tons for Germany, two of 2230 tons for South tons for Germany, two of 2230 tons for South
America, and one of 400 tons for Australasia. Last year's proportion of one-third foreign to two-thirds British is therefore maintained thus far. The return by the Registrar-General of Shipping for January, which has just been issued, being rather later than usual, shows that there has not boen the same large increase to the tonnage afloat as was the case in one or two of the months at the close of the past year. This is due largely to the violent weather, the casualty list including over 100 vessels of 40,000 casualty list incluing over 10 ressels of 40,000
tons. The additions to the registry are mostly tons. The additions to the registry are mostly number 109 and the tonnage is 83,447 tons gross, 60 being steamers aggregating 72,624 tons, with engines of 8726 nominal horse-power. The withdrawals total 169 vessels of 64,766 tons, including 49 steamers of 33,283 tons, and 5153 nominal
horse-power of engines. The net gain is therefore 18,681 tons, and 3573 nominal horse-power, but there is a decrease of 60 vessels, which clearly indicates the increasing popularity, of large vessels. Six vessels of 838 tons were bought from foreigners and 36 vessels of 15,168 tons were sold to foreigners. The aggregate additions in December were 115 vessels of 88,370 tons, but deducting the withvessels of 88,370 tons, but deducting the with-
drawals the net addition was only 23,961 tons. drawals the net addition was only 23,961 tons.
The net increase in January means 230,000 tons in the year.

MODERN FRENCH ARTILLERY.

No. XIV.

The Gun Factory of the Cail

Company-continued.
We have endeavoured in a previous article to set forth the opinions held by French artillerists on the De Bange system of constructing ordnance, and the amount of credit thatshould begiven to that inventor according to the same authorities; we now propose to describe, with as much detail as possible, the special features of his system in its most recent developments. The exhibit of artillery that was made at the Paris Exhibition last year, afforded a good illustration of what the Anciens Etablissements Cail were doing in this direction; the large number of guns they displayed in their pavilion gave, of course, no indication of the amount of work they had then in hand of this description; nor is it essential to our present purpose, which is simply to essential to our present purpose, which is simply to
describe the different types of ordnance made by them. Some information on the subject, however, was supplied by the company in the handbook referring to their exhibit; from this we learn that it was in 1877, after a long series of experiments, that had lasted through four years, that the French War Office accepted the De Bange system and introduced it into the field artillery service. The first calibres that were supplied and passed into the army, were delivered in the year just mentioned, and were of 3.15 in . and 3.54 in . bore. Some years after this date a number of large types were made by Cail for the Government; mountain and siege guns, some for naval and coast defence, ordnance, and rifled mortars. Naturally certain improvements and modifications were gradually introduced into the system, and within four or five years the company was in a position to fill orders from abroad as well as those they received from the Government at home. Since the year 1882 the following is the list of guns furnished by them, and of the purchasing countries

1. Mexico. -8 batteries of field guns and 8 batteries of mountain guns.
2. Servia. - 45 batteries of field guns and 7 of mountain guns. It should be mentioned with regard to Nos. 1 and 2, that these orders were filled jointly by the Cail and the St. Chamond Companies, as has been stated in a previous article.
3. Sweden. -2 batteries of field guns.
4. Costa-Rica. -1 battery of field guns and 2 of mountain guns.
5. Denmark. - 1 gun of 149 mm . (5.86 in .), and carriage fitted with hydraulic brake.
6. Brazil. - 1 naval gun of 179 mm . (7.04 in .), mounted on a carriage fitted with hydraulic brake, and one rifled murtar of 3.15 in .

Making a total of 441 guns and 489 carriages.
The following is a list of material supplied by the company to the French Government, the Cail Company securing the contract on account of their avourable prices. There are more than twelve firms in France which are asked for tenders, and the order is always given to the firm who quotes the lowest price.
A. For the Navy

75 guns of 65 mm . (2.56 in).
25 guns of 140 mm . (5.51 in .)
31 carriages for quick-firing 65 mm . guns (2.56 in.)

55 ditto for guns of 140 mm . (5.51 in .)
27 carriages for guns of 160 mm . (6.29 in .)
19 carriages for guns of 190 mm . (7.47 in .)
9 carriages for guns of 240 mm . (9.45 in .)
7 carriages for guns of 270 mm . (10.63 in .)
175 torpedo tubes completely fitted.
B. For the War Department :

130 carriages for guns of 155 mm . (6.10 in .)
1 non-recoil carriage for a mortar of 155 mm . (6.10 in .)

1 non-recoil carriage for mortar of 220 mm . (8.66 in.)

Besides a large quantity of ammunition.

Prior to the year 1882 the Cail Company had manufactured for the State a large number of carriages both for the marine and the army. For the former they had made

50 carriages for guns 100 mm . (3.94 in .)
$16 \overline{0}$ carriages for guns of 140 mm . (5.51 in .)
69 carriages for guns of $190 \mathrm{~mm} .(7.47 \mathrm{in}$.) And for the War Department:
103 carriages for small casemate guns.
413 carriages for similar guns of larger calibre.
300 carriages for guns of 90 mm . (3.54 in .)
90 carriages for guns of 95 mm . (3.74 in .)
175 carriages for guns of 155 mm . (6.10 in .)
From the foregoing list it would appear that the largest gun attempted by the Cail Company, at all events on the De Bange system, was the ill-fated piece of ordnance of 340 mm . (13.39 in .), which pigured at the Antwerp Exhibition and came to an gigured at the Antwerp Exhibition and came to an
untimely end when it was tested subsequently. As a matter of history it should be placed on record that the Anciens Etablissements Cail were among the most active co-operators with the French Government during the siege of Paris in 1870. It was not only war material which they laboured continuously to supply, for their shops were full of machinery required to supply, as well as might be, the wants of a hard-pressed popuas might be, the wants of a hard-pressed popu-
lation during that trying time. It was they who in an incredibly short space of time constructed the mills in which grain was ground into flour by the Government and distributed amongst the inhabitants of Paris. During the siege, with a delay of loss than four months, they furnished to the Government of national defence 67 mitrailleuses, 110 breechloading Reffye bronze guns, 1 apparatus projecting petroleum, and a large quantity of miscellaneous material, and especially for ammunition.

The ordnance shown by the Cail Company at the Paris Exhibition comprised guns of all calibres, from mountain batteries 80 mm . bore to a cannon of 320 mm . (12.60 in .), complete upon its mountings, and intended either for coast defence or for naval purposes; in addition to this was a special type of rapid-firing gun. All these, excepting the last-named, were on the De Bange system, and showed the latest modifications that had been introduced. Before proceeding to describe them in detail, we will pass rapidly in review the different types, adding a few words upon the special characteristics of each.
The mountain guns were all of the same calibre -80 mm . -and corresponded in their dimensions to the regulation French weapon; the general arrangements of mounting, \&c., were also the same. The leading particulars of this gun are as follows :

Diameter of bore between lands ...		80 mm (3.15 in .)
of grooves ${ }^{\text {a }}$		81 mm . (3.19 in.)
Total length of gun	... 1 m.	(mm. (47.24 in.)
Length in calibres	15
Number of grooves	... \quad.	24
Total weight of gun...	231 lb .
Weight of projectile	13.2 lb .
Weight of powder char88 lb .

Initial velocity
The carriage differs chiefly from the regulation French type in the arrangement of the springs for checking the recoil ; both gun and carriago can be taken into parts for the convenience of transport, the whole being mounted on three mules. The ammunition boxes are loaded in pairs on mules, and each box contains seven rounds. The following are some further particulars of this weapon :

Height from ground to centres trunnions	29.73
Angle of recoil	
Dismeter of wheels	35.67 in
Width between wheels	26.77 in.
Weight of carriage without wheels	242
Total weight of gun and carriage complete	
Greatest elevation above horizo	
Angle of maximum depression	12 de

Of field guns two types were shown; one of very light construction intended especially for mountainous districts, the other corresponding to the regulation field gun of the French army. The following are particulars of the former matériel :

Diameter of bore between			3.15 in .
Total length of gun			59.06 in .
Total length in calibres			18.7
Number of grooves			
Total weight of gun			

MODERN FRENCH ARTILLERY.

CONSTRUCTED BY THE ANCIENS ETABLISSEMENTS CAIL.

Fig. 148. 34-cent. (13.39 in.) gun and carhiage in firing position.

Fig. 149. Mortar 6.10 in. calibre, and transport carriage in firing position.

The carriage is in all respects similar to that of the
French regulation pattern, all but a few quite insignificant details. The limber is entirely of steel excepting the pole and the wheels. It carries

30 projectiles in six boxes, and 30 powder charges in six leather cases; the various tools and spare pieces are contained in two drawers. The ammunition wagon, which is also of steel, has a capacity double that of the limber; it is also so arranged as to carry a spare wheel and pole, as well as various tools.

The following are particulurs of the ammunition employed with these guns:
A. Shrapuel.-
$\begin{array}{llllll}\text { Number of balls } & \ldots & \ldots & \ldots & \ldots & 23 \\ \text { Weight of shell empty } & \ldots & \ldots & \ldots \\ \text { Weight of explloding charge } & \ldots & \ldots & 12.38 \mathrm{lb} \\ \text { Weight of fuze } & \ldots & \ldots & \ldots & \ldots & . .48 \mathrm{lb} \\ \text { Total } & \ldots & \ldots & \ldots & 13.20 \mathrm{lb} .\end{array}$
B. Case Shot.-The case shot consists of a steel plate shell and of a number of hard lead balls separated by cast-iron discs made so as to break up on striking. In the head of this projectile is placed a double-effect fuze, timed for thirteen placed a double-effect fuze, timed for thirteen
seconds, which corresponds to a range of 4000 seconds,
metres.

Number of lead balls
Number of cast-iron segments ... 105
Weight of projectile
${ }_{36}^{105}$
10.9 lb .
C. Mitraille Case Shot.-This class of projectile consists of a zinc shell tilled with balls of hardened lead, the spaces between them being fillod with melted sulphur.

$$
\begin{array}{lllll}
\text { Number of balls } \ldots i i & \ldots & \ldots & \ldots & 85 \\
\text { Weight of projectile } & \ldots & \ldots & \ldots & 12.21 \mathrm{n}
\end{array}
$$

The siege guns exhibited consisted of one of 120 mm . (4.72 in .) and another of 155 mm . $(6.10 \mathrm{in}$.). The former was of the regulation French pattern ; as regards its dimensions it wam as follows:

Diameter of bure between lands	4.72
Diameter of bore to bottom of growves	
Total length of gun	$10 \mathrm{ft}$.8 in .
Total leugth in calibres	
Number of grooves	
Total weight of gun	4950 lh ,
Weight of projectile	39.68 lb .
Weight of powder charge	11 lb .
Initial velocity	1672 ft .
Height from ground to centre of trunnions	
Angle of recoil	33 d
Diameter of wheels	61 in .
Width between wheels	
Weight of carriage	2992 lb .
Weight of hydraulic brake	660 lb .
Total weight	lb .
Maximum angle of elevat	
Maximum angle of depression	15 deg.
The carriage on which this gun	ounted

the French standard pattern and is built of steel, but the gun can also be placed on any fixed mount ing if it is desired to use it in a fort. The projectiles fired from this gun are common shell and shrapnel ; the former is of cast iron with a per cussion fuze in the head.

Weight of empty shell
Weight of bursting charge

	lb.
\ldots.	37.4
\ldots.	1.8
\cdots	.48
	-39.68

Total weight
The shrapnel consists of a steel plate envelope filled with hard lead balls separated by cast-iron tars. The bursting charge is placed in the head, and to the point is fitted a combination fuze timed to thirteen seconds, corresponding to a range of 5000 yards.

Number of lead balls	252
Number of iron star		\cdots	
Weight of shrapnel	\ldots	...	38.37 lb .
Weight of bursting charge 62 lb .
Weight of fuze	1.28 lb .
Total weight			40.27 lb .

The howitzer of 6.10 in . bore was of the pattern known in the French artillery service as the short 155 mm . Its dimensions are:

Diameter of bore between land
Diameter of bore at bottom of grooves
otal length of gun
Number of grooves
Total weight of gun
Weight of projectile
Weight of powder charge
Initial velocity
Height from ground to centre of Trunnions Weight of carriage 2475 lb .
The mounting of this gun is intended for fixed position, provision being made for placing it on wheels to facilitate transport.
Of ordnance for coast defence and naval service, three types may be mentioned; those of 155 mm . 270 mm . and 320 mm . (6.10, in. 10.63 in ., and 12.60 in.). The 155 mm . coast gun is 35 calibres in length, and is intended to give very high initial velocities As the gun is fired by the man who stands directly behind the breech an obturating fuze is necessary. The device employed is on the De Bange systema friction fuze which can only be fired when the breech is quite looked, protection being secured by means of a safety bolt. The following are the particulars of this gun :

Diameter of bore between lands	6.10
Diameter of bottom of grooves...	
Total length of gun	
Length in calibres	. 35
Number of grooves	45
Total weight of gun	10,450 lb.
Weight of projectile	110 lb .
Weight of powder charge	55
Initial velocity	2132 ft .
Height of trunnions above floor	43.31 in .
Maximum recoil	25.59 in .
Maximum angle of elevation ...	25
Maximum angle of depression...	
Total weight of mounting	6 t
Weight of shield	1470 lb .

The carringe is of cast steel, with a central pivo and hydraulic brake. A device is introduced within the frame for taking the strain off the car riage and deck of the ship when the latter is in a seaway by means of Belleville springs, which are compressed by the weight of the gun if rolling occurs. A shield made of chrome steel is attached to the forward part of the carriage, to protect the to the forward part of the carriage, to protect fired from this gun is of cast iron, with a percussion fuze from this gun is of cast iron, with a percus
in the head. The weights are as follows:

Weight of empty shell
 Weight of bursting charge
 Weight of fuze

$\underset{\substack{\mathrm{lb} \\ 73.25 \\ 3.1 \\ \hline}}{ }$

76.834

Total weight
The projectile used for firing test charges is cast-iron cylinder weighing 110 lb .
The mortar of 270 mm . (10.63 in .) corresponds in dimensions with the standard French mortar for coast defence. The following are some of its principal particulars:

Diameter of bore at bottom of
Total length of gun
Number of grooves
Wotal weight of gun
Weight of powder charge
Initial velocity

Height from ground to centre of trun- nions nions
 Length of carriage 99.43 in . 6 tons.

The mounting for this mortar is, of course, inended to be fixed; it can, however, be mounted on wheels for convenience of transport.
The gun of 320 mm . (12.60 in .) was the largest iece of ordnance shown by the Cail Company at piece of ordnance shown be shall have more to say of its coustruction on a future occasion; in the mean time we may give some of its leading particulars. It was mounted on a coast-defence carriage, but is adapted also for naval service. This gun was built upon the latest modification of the De Bange system, in which the biconic arrangement of tubes is reduced to very limited proportions. The following are the leading dimensions of the gun

The Cail Company, not possessing any firing ground of their own, asked, and obtained the per mission of the French War Department, to have this gun tested at the State Polygon at Calais, before it was sent to the Exhibition. The tests were made on May 7, 8, and 9, 1889, by a Government Commission, and from these experiments it was found that the energy imparted to the projectile on leaving the gun was 8622 metric tons. This energy was sufficient to have penetrated an armour ron plate at the muzzle of the gun 35.43 in . in thickness, or 29.63 in . thick at a range of 1500 yards. At the muzzle of the gun the shot would have penetrated a steel plate 23.62 in. thick, and one 19.69 in. thick at a range of 1500 yards. The carriage on which this gun was mounted will be lescribed hereafter.
We shall defer until the next article a notice of the Engstrom quick-firing gun, the manufacture of which is a speciality of the Cail Company, and which completed the collection of war material exhibited by them at Paris. Figs. 146 to 149, on pages 446 and 450, are general views of the representative types of artillery made by the Cail Company. Fig. 146 illustrates a coast defence gun of 240 mm . (9.45 in .), mounted on its carriage and in firing position. Fig. 147 is the gun of 155 mm . (6.10 in.) on a naval carriage, showing the position of shields and hydraulic brakes. Fig. 148 is a general view of the great 340 mm . (13.39 in .) gun and carriage, the former being in firing position; and Fig. 149 is a 155 mm . (6.10 in .) rifled mortar, mounted on its carriage, which is available for transport.

NOTES.

a Free Harbour at Coprnhagen.
A lakge free harbour at Copenhagen, of which there has been so much talk, will probably soon become a reality, judging from a statement the other day by the Danish Minister of War. The Government proposes to construct the harbour at the northern boundary of the town, where a very considerable amount of preparatory work has already been done, resulting in an extensive sea front and an important available area of land. The free har bour will consist of two distinct sections, the commercial and warehousing portion, which will commence almost immediately to the north of the famous Langelinie promenade - one of the finest in the north of Europe-and extends towards the north. Still further north there will be the section for industrial undertakings, \&c. Between the two and with access to both, will be a steam-ferry harbour for the projected steam-ferry communication with Malmö, Sweden, which will be carried on simultaneously with the Elsinore-Helsingborg steam ferry, the starting of which is however closer at hand. The new harbours will be connected with the custom-house premises and the railway stations by railway lines. The harbour proper will occupy about one-third, and the "free" land about two thirds of the whole area: Alṣo at Malmö, in Swẹ
den, just opposite Copenhagen, there is some project about a free harbour, but whether this plan will ever be realised remains to be seen. It is make enough that Malmo should be the effect of the large Copenhagen free harbour too much.

Sand Pumping, Dredging, and the Mersey

Bar.

The Mersey Docks Board have taken the first practical step towards the cutting of a channel through the bar which makes access to the port of Liverpool almost impossible in the case of large vessels, except near flood tide. The Board have intrusted Messrs. Simons and Co., the well-known dredging machinery manufacturers on the Clyde, to design and construct a powerful centrifugal pumping apparatus to be fitted to one of the steam hopper barges built by this firm some time ago. The work of dredging at the bar is to be carried out under the direction of Mr. George Fosbery Lyster, the direction of Mr. George Fosbery Lyster,
M. Inst. C.E., engineer to the Mersey Docks M. Inst. C.E., engineer to the Mersey Docks
Board, and it is to be hoped the much desired result will be attained. It is too late in the day to point out the serious inconvenience caused by the bar to inward-bound steamers, especially the great Atlantic packets, the gain in time by fast steaming being often more than counterbalanced by the long delay, in some cases many hours, waiting for sufficient water at the bar. It is intended to begin cient water at the bar. It is intended to begin
with a set of pumps to raise 500 tons per hour and with a set of pumps to raise 500 tons per hour and
to work in depths ranging from 10 ft . to 35 ft ., but doubtless when the advantage is established more extensive plant will be employed to facilitate the work and make the proposed channel wider and deeper. The dredging material will be discharged into the hopper of the barge, which has capacity for 500 tons. The pumping apparatus will be similar to that fitted on board the Beaver, built by Messrs. Simons, and now at work at Natal. In our issue of August 16 last, we illustrated and described this vessel, which has two $18-\mathrm{in}$. cen rifugal pumps, with suction pipes. The two pumps work independently and are driven from the propelling machinery by shafting. The tubes are each 67 ft .6 in . long, and can dredge sand at a depth of 40 ft . from the water level. Great care was taken in designing the pump discs. They work to 150 revolutions per minute and absorb 180 indicated horse-power. At this speed they can raise ully 1000 tons per hour. The engineer of the Natal Board, in reporting on the work of the Beaver, states that the vessel is doing good service. In one week she lifted 10,500 tons, and discharged over the bar 10,000 tons, and towed outside seven barges about 100 tons each. The time of dredging was 24 hours 30 minutes. Time slipping moorings depositing the spoil, and picking up mooring gain, 37 hours 15 minutes, or a total of 61 hour 45 minutes, and the first load lifted was in 45 minutes, or equal to 666 tons per hour, with one pump working all the time. The engineer adds ' We could certainly do more work if we could get back to the moorings without being delayed, but the crowded state of the harbour renders it difticult to get back, and a lot of time is lost thereby." The best single day's work done by the Beaver was five loads, or 2500 tons raised and discharged about four miles off. The usual ten-hour day's work is raising five loads and discharging four loads, or vice versA. The result of the work at Natal of the Beaver and a bucket-ladder dredger Otter, also built by Messrs. Simon, has been that whereas several years ago the ships trading to Natal were of sbout 400 tons, steamers of 1700 tons and drawing 16 ft . of water can now safely go up to the wharves. The Otter is making a channel 300 ft . wide, and has in a short time increased the depth from 16 ft . to 18 ft . over the whole area, and the desired depth (22 ft .) will doubtless be obtained shortly These facts must be encouraging to the people of Liverpool, as they augur well for the success of their project to remove the barrier which, if taken way, would raise their port to rank among the finest in the world
The Effect of a Pig-Iron Cargo on Ships' Compasses.
The important question of the effect of a cargo of pig iron on the compasses of a steamer came up at Board of Trade inquiry just held at Glasgow, into the circumstances attending the loss of the steamer Dunrobin. The point is not exactly new, but the fact that the theory was supported by Mr. William Bottomley, who has been for thirteen years asso cịated with Sir William Thomson in the manufac

MODERN FRENOH ARTILLERY.

No. XV.
The Gun Factory of the Cail Company-continued.
We may now proceed to describe in detail the most recent development of the De Bange system as carried out by the Anciens Etablissements Cail, and exhibited by that company at the Paris Exhibition last year. The most important piece of ordnance that has been manufactured on this system was the $340-\mathrm{mm}$. gun (13.39 in .) shown at the Antwerp Exhibition. A $320-\mathrm{mm}$. (12.60 in .) gun, together with one of $155 . \mathrm{mm}$. (6.10 in .), is completely illustrated by Figs. 150 to 162 on page 468. These illustrations and much of the d'Artilleric. Thation are taken from the Revue ans both these guns were given in our last article. The construction of the $155-\mathrm{mm}$. gun is shown in the section, Fig. 154, page 468, where it will be seen to consist of an inner tube covered with two rows of hoops, the first one extending the whole length of the tube ; the outer row reaches somewhat in ad-
where it will be seen that the outer end is inclosed by a gas-check device, consisting of a cap sliding over the tube that forms an extension of the fuze ; this cap is enlarged to form a flat handle P, and the end of the projecting firing pin terminates with a cylindrical head O. The breech-block, which is, on its general lines, of the De Bange pattern, is provided with a safety apparatus shown in Figs. 157, 158, and 159. The bolt A is split (Fig. 157), and is carried by the swinging bracket, on which it is free to slide, and it is operated by means of the handle N. Between the jaws of the split bolt A is placed the lever B, turning around the axis C, which is fixed to A. The upper end of this lever B is forked at B^{1}, this fork being in the axis of the gun when the block is closed; a flat spring tends always to press the end D of the lever forward. On the inner side of the bolt a groove is cut terminating in the recesses E and F, connected to the groove by inclined planes. A finger G enters this groove by inclined planes. A finger G enters this
groove carried on the outside of the cylinder I groove carried on the outside of the cylinder It
(Fig. 158), and held up by the coiled spring. At the other end of the cylinder is a second finger H, sliding in a groove, and preventing the cylinder I
being bolted to it. For vertical training a toothed sector is bolted to the side of the gun, a toothed wheel inside the frame (see Fig. 160) being geared into it. Motion is given to this pinion by means of a hand wheel and bevel gearing turning an endless screw (Figs. 160 and 161). In order to permit the angle of the gun to be adjusted up to the moment of firing and to avoid straining the teeth of the pinion by the recoil, the motion of the handwheel is transmitted to the endless screw by means of a toothed cluch a, Fig. 160, so that at the moment of recoil the clutch is disengaged, but comes automatically into gear as soon as the gun is brought back into firing position. A slight longitudinal play is also given to the endless screw by compressing the Belleville springs that are placed against it at the moment that recoil takes place (Fig. 161). The gun is trained horizontally by a pinion mounted on a vertical shaft, and gearing into the circular rack on the baseplate. A special arrangement, not shown in the illustrations, is introduced to check the inconvenience arising from the rolling of the vessel containing the gun. Within the mounting, and attached at one end to

Fig. 179. The engström quick-firing gun.
vance of the trunnion ring. The biconic system of from turning. When the bolt is moved up or down reinforcement already described, and illustrated to an exaggerated scale (see Fig. 145, page 403 ante), is modified in such a way that the objections raised against the system and confirmed by experiment, have practically disappeared, and the construction approximates very closely to the standard French practice. Near the breech the outer surface of the tube is swelled so as to present the appearance of a double cone with the bases abutting; a corresponding form is also given to both rows of rings at this point. Beyond and at a short distance in front of the trunnion rings, asimilarbiconic enlargementismade, the increase in the diameter, however, only amounting to 5 mm . From this point to near the muzzle a slight and uniform taper is given to the tube, but at the end, for a distance of about 10 in ., the tube is'coned in the opposite direction, so that at the extreme end the diameter is larger than it is at a foot nearer the trunnions. Of the rings in the inner row, one only is biconic, the others are cylindrical as far as the next enlargement; and are tapered beyond; only one ring of the second row is biconic, and the front ring of this row, beyond the trunnions, is held in its place by a recess made in the adjacent inner ring. The chamber is 50.39 in. long, or more than 8 calibres; its diameter is 6.41 in ., or .31 in . greater than that of the bore. The length of the rifling is 25 calibres The breech-closing mechanism, which is of the De Bange latest pattern, is illustrated by Figs. 157 to 159. The firing tube is screwed into the breech-block. It is illustrated separately by Figs. 155 and 156 ,
by the handle N, the finger G remains set in the groove R, and the travel of the bolt is limited by the recesses at the top and bottom of the groove; the finger pressing against the side of the recess being sufficient to prevent any further accidental movement of the bolt. When the breech-block is closed and the fuze introduced, if the bolt is pushed from right to left, the end of the firing pin enters the fork in the top of the lever B, whilst the enlarged end \mathbf{P} is held fast between the two branches of the bolt. The gun is fired by pulling on a lanof the bolt. The gun is fired by pulling on a lan-
yard passed through the hole D of the lever B; by pulling on the cord, the head R of the firing pin is pulled forward by the movement of the lever and the charge is exploded. The bolt enters a recess M made in an extension of the breech-block, and in order that it may be slid up and down to effect the manipulations necessary for firing, the breechblock must be completely closed. It is this latter device that constitutes the safety apparatus.

The form of naval carriage on which this gun is mounted is shown by Figs. 160 to 162 . It is of cast steel and has a circular baseplate, which is bolted to the deck of the ship. Upon this plate is a live ring with a series of conical rollers. The form of the carriage will be seen from the illustrations as well as the position of the hydraulic brake. The axis of the brake cylinders is on the same plane as that of the trunnions, which are mounted on the slides, to which are also attached part of the elevating gear. The forward part of the frame serves as an abutment to the brake, the piston-rods
the base and at the other to the carriage, are a series of bars, on which are placed a number of series of bars, on which are placed a number of
Belleville springs in such a way that the weight of the carriage is partly thrown upon the springs, which are compressed ; these springs also aid in lessening the shock of recoil. This gun is provided with a steel shield mounted upon the forward part of the frame. The $320-\mathrm{mm}$. (12.60 in .) gun (Figs. 150 and 151) is a heavy piece of ordnance weighing 47 tons. It consists of an inner tube reinforced by four tiers of rings, the first extending for its whole length; the second is carried as far as the middle of the chase ; the third a little beyond the trunnions; and the fourth stops a little in advance of the powder chamber. Like the gun we have just referred to, the De Bange system of construction is introduced in a reduced fashion, so that the type resembles the French standard model more closely than the original De Bange pattern. The tube is swelled near the breech and muzale, and the rings over these parts have corresponding forms. Over the whole length where the first row of hoops is covered by the second row, the outer faces of the former are biconic, the inner faces of the second row being of course turned to correspond; the fourth row is all cylindrical. The total length of the gun is 39 calibres; that of the rifled portion being 29 calibres. The diameter of the powder chamber is 12.99 in . and its length is over 8 calibres. The mechanism of the breech is similar to that described for the smaller gun, and the safety appliance is identical ; the breech is operated by hand. At the Exhibition the gun was mounted on a central
pivotting carriage that was built for the 340 mm . gun shown at Antwerp and which afterwards failed when tested ; the weight of the mounting is 54 tons. It should be mentioned that a number of rounds were fired from the $320-\mathrm{mm}$. gun, and which established the following ballistical properties. With a charge of 418 lb . of brown prismatic powder, an initial velocity of 2132 ft . per second was obtained, with a pressure of about $42,700 \mathrm{lb}$. per square inch the residual velocity of the projectile at about 1600 yards was measured and found to be 1928 ft . The mean range with an elevation of 10 deg . was about 10,000 yards.
Fig. 179, page 465, is a general view of a quick fring gun made by the Cail Company upon a system devised by Captain Engström, a Swedish artillery officer. Before describing the construction of this gun, which is illustrated fully by Figs. 165 to 178 , page 469, we may give a few particulars of it. Two types are made, one heary and the other light, the following being the particulars :

Diameter between lands...

Heavy	Light
Type.	Type.
2.24 in.	2.24 in.
2.264 ,	2.264 ,
89.56 "	59.86 ",
40	26
24	24
660 lb .	440 lb .
6 ,	6,
1.98	1.32,
1827 ft .	1528 ft .
30 to 35	30 to 40
	44.28 in.
5.90 in	3.15
13 deg.	10 deg .
20	
1210 lb .	12050 lb .

The projectiles for the light type of this gun are common shell and shrapnel; for the heavy type, common and armour-piercing shell. The cartridge is formed either of brass tube or of linen and paper with a brass base. Particulars of the projectiles are as follows

Conmmon Shell.

Conwon shell.		lb.	lb.
Weight of brass cartridge case	...	2.53	2.09
,, paper cartridge case	..	1.98	1.76
", empty shell	5.654
", bursting charge 22
,, fuze 176
Total weight	9.900
Shrapnel.			
Number of balls	...	104	
Weight of shell	5.8
", bursting charge176
Armour-piercing shell	
Weight of empty shell ...	\cdots	...	530
, bursting charge.. 11
" fuxe 11
Total weight...	11.496

The mechanism of the heavy and light types of the Engström quick-firing gun differs only in a few unimportant particulars, so that the illustrations Figs. 165 to 178 , and the following description, serve equally for both. The breech of the gun is made with four projections, placed in pairs, parallel to each other, and above and below the axis of the bore (Fig. 165). Holes are made in these projections to receive the end of the spindles O and O^{1}, Fig. 167, which carry the principal pieces of the breech mechanism. These are, first, the block A (Fig. 168), which turns around the axis O, and is extended backwards by the lever B, at the end of which is the handle C; and second, the block D, that turns around the axis O^{1}, and the motion of which is controlled by the block D. This controlled motion is produced by the sector E (Fig. 168,) on which are two pins, e and e^{\prime}, which act as ratchets, while on the spindle O^{1} is another sector F , in which are two corresponding recesses f and f. When the lever B is thrown upwards, the sector E is depressed, the pins gearing into the recesses of the sector F cause the block D to open outwards, exposing the end of the bore. Fig. 168 represents the various parts when in the loading position. To close the breech, the lever B is pulled downwards, when the reverse movement is produced. Before the pin e clears the recess f, the bearing face a of the block A (Fig. 172) presses against the corresponding face d of the breech-block D, and when the lever is home, it is held in position by
the former. On the spindle 0 there is also a finger m, which in the movement of opening the breech pushes the block D to the rear, as soon as the bearing face a of the block A clears the face d of bearing face a of the block A clears the face d of
the block D, that is to say while the pin e of the sector E is still in gear.
The gun can be tired by hand with a trigger, or automatically as soon as the breech is closed. The firing device is mounted on the block D, and moves with it. The different parts comprise a slide G, a striker H, which can be replaced at will (see details Figs. 167 to 178), a main spring I, and a detent K, on which are the fingers i and i ' This latter is free to turn an axis at right angles to the right side of the block. When the gun has been fired, and the lever B is lifted, the recess u in the block A (Figs. 166 and 172) engages with the finger g of the slide G, and presses it back. There is an enlargement at the end of the striker H (Fig. 178) that bears in a recess in the slide G; and when this latter is forced back, the striker moves with it, compressing the spring I, until the arm H^{\prime} of the striker enters a recess in the lower part of the striker enters a recess in the lower part of the
detent; the gun is then at half-cock. The various detent; the gun is then at half-cock. The various
pirts of this mechanism are shown in Figs. 177, pirts of this mechanism are shown in Figs. 177,
178 , \&c. These different morements take place during the early part of the motion of the blocks A and D . When it is completed, the firing device continues to move with the blocks. On closing the breech the recess u in the block A again engages the finger on the slide, and presses the latter forward, and when the breech is completely closed a pressure of the finger on the detent K releases the striker, which is driven forward, and explodes the cartridge. For automatic firing a special arrangement is introduced, shown in Figs. 168, 169 , and 170 . On the right side of the block A are two pins L and L^{\prime}; on the former is placed loosely a button, on which is formed the projection M. This projection can take two positions shown in the engraving ; when it is in that corresponding the dotted line, Fig. 169, it is out of use ; when it is as shown by the full line, it liberates the triker by pressing against the finger i of the detent, when the breech is closed. On the axis L^{\prime} is a lever R free to move to and fro; at its upper end is a finger r, which can enter a recess r^{1} in the face of the block A. The lever R is recessed on the inner face, and contains a flat spring (see section Fig. 170). The spindle L, where it passes through the lever R, is eccentric, while within it is made with two flat faces (Fig. 169) against either side of with two flat faces (Fig. 169) against either side of
which the spring can be made to bear. When the which the spring can be made to bear. When the
projection M is in its lowest position, the combined action of the spring and the eccentric part of the spindle L, lifts the finger r out the recess $r \cdot$. The gun is then fired when the breech is closed, by the pressure of the projection i releasing the detent. If, however, the tinger M is above the lever R, which is its ordinary position for hand-firing, the point of M enters a recess in the breech-block, and the gun cannot be opened; the lever B may then be used in connection with the butt for training the piece. Before opening the breech aftor firing, it is always necessary to release the block A from the finger r by pressing on the end of the lever R. A safety device is introduced consisting of a projection ${ }^{1}$ in the detent K, which presses against one of the lower flanges at the end of the gun, and holds the detent, until the breech is closed, when the finger falls into a recess i^{11} and is set free.
The cartridge cases are removed by two independent extractors N and N 1 (Fig. 166), placed in ront of the breech-block and free to move vertically to a limited extent. When the breech is closed they enter two recesses formed at the back of the gun, and are held there by means of the springs II I, which are extensions of the main spring I. When the breech is thrown open, the extractors first slide upwards for a short distance and loosen the cartridge case in the bore, then falling back with the block they carry the case with them.

The mounting of the light type of this gun is shown in Fig. 163. It is a rigid stand, carried by a series of Belleville springs arranged around the base, and which are sufticient to absorb the force of recoil. The heavier pattern has a carriage furnished with a hydraulic brake. During recoil the carriage turns backwards around a horizontal centre fixed on the underframe, the motion being controlled by the brake cylinder, which is set vertically. The underframe is mounted on a baseplate and ring of live rollers. Buth guns are trained with a stock. Fig. 179 gives a clear idea of the appearance of this gun and its carriage.

THE INSTITUTION OF NAVAL ARCHITECTS.

In our two last issues we have dealt (see pages 405 and 433 ante) with the chief part of the paper read and discussed during the recent meeting of the Institution of Naval Architects. We have now to deal with the concluding proceedings.

Liff Boats.

The final sitting of the meeting was held on the evening of Friday, the 28th, when the first paper read was on " Experiments with Lifeboat Models," by Mr. J. Corbett, of Manchester. This interesting paper we shall print shortly with the diagrams by which it was illustrated, so we may at once proceed to the discussion. This, although of an animated and prolonged nature, was not perhaps of great practical or scientific interest.
Briefly stated, the author's proposals are to substitute for the comparatively narrow and deep selfrighting boats now used by the Royal National Lifeboat Institution, a more shallow and beamy non-self-righting bost. This vessel would be far less likely to turn over than the existing boats, having greater natural stability, but if she did turn bottom up she might remain in that position. We cannot now enter fully into the points raised by the author, but these will be seen when we publish his paper. The Royal National Lifeboat lnstitution, as represented by its officials at the discussion, prefers its own design. Who is right and who is wrong will be likely to remain for a very long time at least an open question, as any trials to settle the question are not likely to be made, as the difficulties in the way of carrying them out on a practical scale are undoubtedly great.

The Screw Propeller.

The last paper read at the meeting was that of Mr. James Howden on "Various Theories of the Screw Propeller." This was a very long paper, occupying nearly thirty pages of the Transactions, and had to be very much abridged in the reading.
The author commenced by referring to the two papers read at last year's meeting of the Institution mr. R. E. Froude and Professor Greenhill respectively, both of which treated of the theory of the screw propeller. In these papers the theories of Rankine and Cotterill were referred to, and the author also made mention of the researches of Dr Froude. It may be said generally that Mr. Howden has no agreement with these eminent authorities, a fact which he makes no attempt to gloss over, as he speaks with no ambiguous phrase, so far as the fact of disagreement is concerned. In 1877 the author read a paper before the Glasgow meating of that year, and in the following year he read a second paper before the Institution of Engineers and Shipbuilders of Scotland, in which he shows the error, as he believed, of Rankine's theory. In 1889 he read a second paper before the latter Institution. The arguments brought forward in the present paper were those the author had already advanced in the memoirs to which reference has been made. He quotes various authors on the subject to show how widely Rankine's theory has been accepted. As we published Mr. Howden's paper of 1877 in full,* our task of giving a fairly intelligible abstract of his present contribution will be much simplified. Mr. Howden says :
"As the correctness of Professor Rankine's and every other theory will be more easily tested if it can be first clearly demonstrated what are the actua motions of the water produced by the action of the screw under any given dimensions, pitch, slip, and velocity, the author undertakes this demonstra tion. That such a demonstration is possible may be inferred from the following considerations.
" A screw is an instrument whose dimensions, shape, and relative position of every part to each other can be definitely ascertained; also its exact linear progress per revolution when working; consequently an exact geometrical delineation of its movement in the water and the relative position to the water of every part can be made. This delinestion, when properly analysed, will therefore reveal the only action on the water that is possible by each and every part of the propeller during each revolution under any given conditions of working. This investigation is made simpler by first examining the action of the propeller under the conditions of its being a screw of uniform pitch, and that it

See Engineering, vol. xxiv., page 313.

THE MANCHESTER SHIP OANAL.
That great engineering work, which is to convert the inland city of Manchester into a port accessible to ocean-going vessels, has already occupied a considerable share of our columns. So far back as the year 1883 we published a series of articles in which were given the probable characteristics of the then proposed scheme. This was before the Parliamentary business, which cost such a vast sum to carry through, had been disposed of. Since then we have kept our readers fairly informed of the we havess of the undertaking and the work actually progress of the undertaking and the work actually
done ${ }^{*}$ under the direction of Mr. Leader Williams, the chief engineer. We have also from time to time illustrated and described various parts of the plant and machinery used on the work.
For the facilities which have been afforded us for gathering the information we have laid before our readers, we have to thank Mr. Leader Williams, and also the members of his staff, who have taken so much trouble at very busy times in giving us information. We also have to thank the engineers of the contractors' staff for their ready courtesy in supplying us with detnils of the work.
We now propose giving a description-founded on information obtained during a visit of some duration which we recently paid to the work-of the most interesting parts of the work carried out since our last articles appeared, but before entering into details we will say a few words of general explanadetails we will say a few words of general explana-
tion, as many of the features have been altered tion, as many of th
since we last wrote.
Tracing the course of the work upon the plans, we find the canal, from its lower end at Easthan up to Runcorn, skirting along the shore of the estuary of the Mersey; sometimes, where points intervene, cutting through the solid land, and again, when inlets or bays are met, being formed partly by walls built up, and partly by excavation. In the latter case a certain part of the estuary has been encase a cortain part of the estuary has been en-
croached upon so that the incoming tidal water has croached upon so that the incoming tidal water has
had less space to fill, and, therefore, it is claimed, the scour on the ebb over the bar of the Mersey will be less efficient. This, of course, is the old objection which proved fatal to the proposal to bring the canal down the middle of the estuary, and it has, we believe, led to further trouble. How far the very small space occupied by the new works of the canal can effect the vast flow of water of the Mersey we will not pause to inquire; and, indeed, the matter has been sufficiently argued before duly authorised tribunals; but we must confess that on first blush the objections raised appear exaggerated.
Howerer this may be, openings have been made in the walls of the canal so that there is a communication between the canal and the estuary in order that the tide may flow in and out. In this way the canal will be semi-tidal up to the Latchford Locks, 21 miles from Eastham, for all tides having a rise of over 14 ft . above the level of Old Dock Sill, Liverpool, will flow into the canal through the openings mentioned. The highest spring tides have, we believe, a height of about 22 ft . over Old Dock Sill, and thus there will be a maximum average rise of tide in the lower part of the canal, of 8 ft . Tides under 14 ft . would have no effect. It may be further noted that the present plan is to bring the canal almost altogether inland, for the part that will run into the estuary forms but a small part of the whole. In this way the piece between Eastham and Latchford will add greatly to the tidal space and will more than compensate for the narrow strips cut off the shallow margin of the estuary; very different from the large deep water area taken by Liverpool to work docks.
It may be added that the ordinary breadth of the canal at the botton is 120 ft . and the standard depth is 26 ft . The slopes of the canal, where excavated in soft material, are pitched with rock from the cutting. Where the natural rock is met it is oxcavated to a batter of 1 in 6.
The canal is 35 miles long, and the total rise from Eastham to Manchester is 71 ft .6 in . The rise at the various locks is as follows

 .xxxv., pages $73,114,227,241, \quad 263,388,590 ;$
vol. $\times \times \times \mathrm{vi}$, page 591 ; vol. xxxvii., pages $60,93,199,363 ;$ vol. xxviif., pages i 131, 111; vol. xafiii, pages 63,622
ol. xliii., page 115; vol. xliv., pages 177, $241,300,374$ vol. xlv., pages 560, 596, 647; ; vol. xlvi., pages 65, 238

Barton

Total
$\begin{array}{cc}\text { ft. } & \text { in. } \\ 15 \\ 13 & 0 \\ 13 & 0\end{array}$
$\overline{606}$
The canal will be approached from the estuary by the Eastham channel. This has a considerable depth at low water, but will want some dredging to allow large steamers to approach. It is, however, one of the principal channels, and is, moreover, of a permanent nature, not fluctuating like so many other channels in the estuary. Messrs. Simons, of Renfrew, are constructing a hopper dredger to carry 850 tons at 9 knots. The cost of this vessel is about 25,0001 . Outside the locks the cana approach will have a slope pitched with stone from the cutting.
Upon passing through the Eastham Locks we find the canal is considerably broadened to allow room for ships to lay by whilst waiting. Between Eastham and Runcorn the canal skirts the estuary ; and the various small streams which flow into the estuary, and which the canal would block off, have to be carried by means of syphons under the canal. These syphons are composed of iron. All the water or supplying the canal is taken from above Run corn, but there are no storage arrangements, as the waters of the Mersey, Irwell, and other rivers will niles from Eastham the canal crosses Ellesmere Port Bay. This is the terminus of the Shropshire Union Canal. As the Ship Canal will close off from the estuary the mouth of the other canal, all craft will have to pass down the Ship Canal to Eastham. The great difficulty will be that the traftic between the Shropshire Union Canal and the estuary must not be closed during construction, and this has afforded a difficult problem for the engineers to solve.
From Eastham to Ellesmere the scenery is of a picturesque nature, consisting of cliffs well clothed with trees; but the canal works are not doing much to perpetuate these rural charms, either here or elsewhere along the route. At a distance of ten miles from Eastham the canal crosses the principal feeder of the estuary, viz., the River Weaver, and the embankment forming the wall of the canal has to be carried across the mouth of the Weaver, and the traffic has to be kept open. This forms a second engineering feat of some difficulty and importance. The bed of the river is clay and river sand. At Ellesmere Point there is also clay
and river sand, but with rock under. In order not to encroach more than necessary on the space of the estuary, extensive piling and sheeting is being carried on. At the time of our visit these opera tions were in full swing and appeared to attract a good deal of attention on the part of the authorities. A water jet was being used to aid the driving powers of the monkey, and this seemed to cause a certain amount of trouble in its direction, for occasionally it devoted its energies to most undesirable ends.
In the estuary of the Weaver the Ship Canal Company have constructed a lock to connect the Weaver with the Weston Canal, and higher up the canal there will also be a lock through the outer embankment at Weston Point, which is the dock termination of the Weston Canal. This lock will give the Weaver Navigation access to the estuary ; or vessele may go down the Ship Canal to Ellesmere Point and Eastham. It will be seen, therefore, that vessels bound for the Weaver can either come through the locks at Eastham and up the Ship Canal, or can come up the Mersey to Weston Point and through the locks in the embankment. In the latter case on getting through the locks they will be able to go right into the already existing Weston Docks, as there is the same water level there as in the canal, therefore gates will be unnecessary. These docks communicate with the Weston Canal.
From what has been said some idea of the initial difficulties Mr. Leader Williams has to overcome will be gathered. It may be said that great advantages will follow for the Weaver Navigation, in consequence of the Ship Canal works. Thus if the water in the estuary has ebbed out when a vesse arrives at the mouth of the Weaver, she will be
able to get down the Ship Canal to Eastham; or she might, by taking the same course, escape the last of a foul tide. It must be remembered also that with regard to draught of water the Weaver craft will be benefitted also, for the difficulty in getting heavier draught vessels up to Northwich, and other places on the Weaver, was not because
there was not water enough in the Weaver itself, but that water was lacking in the estuary; that is to say, there was better water in the little Cheshire stream than in the big and important estuary of the Mersey. This point has been well brought out by Mr. Lionel B. Wells, of Manchester, who was, for many years, resident engineer to the Weaver Navigation, succeeding Mr. Leader Williams in that post, and under whose guidance many of the works of that important piece of inland navigation were constructed.
The Canal Company, by their Act, are bound to pass all the water from the Weaver direct into the estuary without passing it down the canal. For this purpose tidal openings 600 ft . long are to be constructed in the canal embankment. There are also 300 ft . of sluice-way capable of lifting 15 ft . The sluices to be used in case of heavy floods to which the Weaver is subject,* and to pass off tidal water. These sluices are ten in number, each 30 ft . wide, constructed under Mr. Stoney's patent similar to those working so successfully at Belleek and other places in Ireland.
From the Weaver up to Runcorn is a distance of about three miles, and here three main canals have their termination in the docks there constructed. The canals are the Weston Canal, in connection with the Weaver Navigation, the Bridgewater Canal, now the property of the Ship Canal Company, and he Runcorn and Latchford, or Old Quay Canal, which is also owned by the Ship Canal Company. The last named is now blocked up for a distance of about eight miles from its termination, owing to the act that the Ship Canal occupies its site. When the Ship Canal is opened the remaining portions of it will serve as feeders for the trade of the smaller canal, and will be joined by a lock outside Warring. ton. The outer bank of the Ship Canal will inclose all these three smaller canals and their dock terminations. They will have their exits into the estuary by locks in the embankment, or the traftic may be taken down the Ship Canal to Eastham if nocessary
The canal next passes under the Runcorn Bridge, so well-known as a feature in the journey to Liverpool. This bridge will have a clear headway of 75 ft . above ordinary high-water level, and this determines the height to be allowed under bridges throughout the canal.
After passing Runcorn the canal strikes inland, crossing and recrossing the windings of the Mersey and Irwell, and sometimes occupying the river bed altogether. All the way up to Warburton, which s about 11 miles from Runcorn or 25 miles from Eastham, the River Mersey is kept open and flows down to the estuary. At present it is being diverted into a new channel at three places, where it now crosses the line the canal will take. At Warburton crosses water level of the river and of the canal will be the same, and it is here the canal and the river may be said to join. There are locks in the Mersey at Warrington, and to this point the river is tidal.
From Warburton the canal will take the place of the old natural river, the original winding course being filled in by spoil.
(To be continued.)

MODERN FRENCH ARTILLERY.
 No. XVI.

Gun factory of the Forges et Chantiers de la Mediterraner.
There are but few large private gun factories in France in which heavy ordnance is manufactured on an extensive scale, and the principal is the establishment belonging to the Compagnie des Forges et Chantiers de la Méditerranée, started at Harre less than ten years ago. Its transactions are already on an important scale, especially with foreign Governments, and its productions have acquired a reputation sufficiently high to justify the opinion that it will, before long, become a serious competitor of private makers in this country and elsewhere; for this reason any information connected with these works possesses a particular interest, especially taken in connection with the magnificent display made by the company in the palace of the Minister of War at the Paris Exhibition last year, and which attracted more attention than any other exhibit of the kind. In future articles we propose to describe the works of this company, and in considerable detail to consider the different classes of ordnance manufactured

* A description of the Weaver Navigation will be found on pages 244 and 564 of our thirty-eighth volume.
by it. For the present we shall confine ourselves jacket extends for the whole length of the tube, to to a consideration of the general features in the which it consequently gives a largely increased design of the heavy guns made by the company, because their practice constitutes an important chapter in the history of modern French artillery.

It is claimed for these guns, which are all manufactured on the Canet system, that they offer ample guarantee for excellence of material, perfection of workmanship, and efficiency in service. Every detail connected with them-and many of them present a considerable originality in design-has been worked out by M. Canet, the director of the establishment, who, after having received a special and admirable training in this country, has shown that he has learned how to profit from the valuable experience he obtained here. A fundamental
jacket extends for the whole length of the tube, to
which it consequently gives a laryely increased longitudinal resistance, this precaution being especially necessary to resist the great strains to which, in the future, guns will be exposed, hy the use of the new slow-burning, smokeless powders, which will probably come into general use.
It should be mentioned, however, on this point that in France, at least, considerable uncertainty exists on the subject of smokeless powders, and it is evident that prolonged experience only can determine whether the new explosives will remai
Figs. 180 to 185 give a giderable period.
Figs. 180 to 185 give a good general idea of the typical forms of construction upon the Canet, Woolwich, De Bange, Armstrong, Krupp, and French Nary systems. In this diagram the great com-
jectiles fired from them, and that this advantage is not gained at the cost of excessive strain upon the gun, but that it is due to the particular form of rifling adopted ; to the method of utilising the expansion of the powder gases; and to the special characteristics of the respective guns. In advancing the claims of his system, M. Canet points out that it has been urged against comparatively light projectiles that they lose their initial velocity very rapidly, and he admits that this allegation is well founded when it has reference to shell, which are too light for the calibres from which they are fired. But between the shorter Canet projectiles and the heavier ones made by Krupp, the difference is acarcely appreciable at the range of 2000 metres. that is to say, for the distance which it is assumed will be about the average range for future naval

orinciple controlling his designs is that of giving great longitudinal as well as transverse strength to his guns, in order that they may be able to resist without injury, not only the extremely high working pressures due to the service charges, but also to abnormal strains which from time to time, and from various causes, are developed in the bores of heavy guns. All the various parts of which these guns are formed are, as far as possible, symmetrical in shape and varying gradually and uniformly in thickness, in order that they may be well adapted to withstand the various trying operations of forging, tempering, and annealing. The general characteristics of the design are as follows: The inner tube that extends from end to end of the gun is relatively of considerable thickness; this is strengthened by two long sleeves or jackets shrunk upon the tube and gripping each other at the joint ; they are connected together at this point by the trunnion ring, which butts against the front one. These jackets are shrunk upon the inner tube as tightly as is consistent with the nature of the material used, the object being to produce a gun body as nearly as possible as strong as if it were made one piece. Over the jacket are then shrunk one or several tiers of broad steel rings, varying in number and thickness with the calibre of the gun. All the various parts are cylindrisal, in order to secure perfection of workmanship ond uniformity in shrinkage. The

diagrams showini; constrection of variocs staninard types of ouns.
parative length and simplicity of construction of the Canet $12-\mathrm{in}$. gun will be seen at a glance.
engagements, and the striking power is practically the same for both classes of projectiles. But the Another feature in the Canct guns is the system shorter shell has this advantage over the longer of breechclosing. This we have already referred and heavior one, that it is more effective in its to, and shall consider in detail later on ; but in the destructive action against armour plates : it pene mean time we may say that the block is made trates with more certainty and is less exposed to with a modification of the interrupted thread, is the danger of breaking up under the shock of provided with a special arrangement of obturator impact. One of the principal advantages obtained of the De Bange type, and has various devices by giving projectiles a very high velocity is that it for firing, as well as safety appliances, most secures for them a correspondingly flat trajectory, of which present considerable originality. In and consequently increases the chances of their many of the patterns the method of working the and consequent increasas the chances dangerous many of the patterns the method of working the being more effective by extending the danger ous
breech-block is reduced to the simple operation of zone to a considerable degree. It is urged that turning a hand lever always in the same direction, with the Canet guns firing at 1000 metres' range, a system the prototype of which exists in this the dangerous zone is 33 per cent. greater than country, and which certainly presents striking it is with a Krupp gun of the same calibre advantages over the rather complicated gear which and the same length of bore. For example, if is enployed in the standard naval artillery of with a Krupp gun it is possible to strike the object France. It is claimed for the Canet guns that they aimed at, in spite of an error of 300 metres in impart specially high initial velocities to the pro- judging the distance, with a Canet gun the target
HEAVY CRANKSHAFT LATHE.
CONSTRUCTED by messrs. G. RICHARDS and CO., LIMITED, ENGINEERS, BROADHEATH, MANCHESTER. (For Description, see Page 501.)

would be hit even if this same error was the latest type will give from 1960 ft . to 2620 ft . gun, 13.39 in , had a normal powder charge of sult in every maker doing his utmost to supply increased to 400 metres. The striking angle being
smaller with a
flatter velocity, according to the length of the bore. 485 lb . The ratio between the weight of the charge the highest quality of motal that is possible. The steel thus furnished is and it it subjected to a seovere
nealed at the works,
series of tests to ascertain its resistance both to series of tests to ascertain its resistance boti
tractive and compressive strains, while particurar
care is taken to test its limit of elasticity, the

 with as much publicity as possible, and are always
under the control of the different agenta employed
by various governments for whom orders are in by various governments for whom orders are in
execution at the works. This system has the un. execution at the works. This system has the un-
doubtedly good effect of maintaining the quality of
steel furrished at a very high standard, and of
enabling the inspectors to satisfy themselves about
every piece of metal that is put into each gun. No less important and dificult than the design
and construction of heavy guns called for today are the means of providing such guns with
suitable platforms and carriages on which they
can be mounted trained, and fired. The strains
 thrown upon the carriages by the reaction after
fring are so considerable, that it is necessary to
have them very powerful; it is also absolutely

 results from this that any reduction of the striking that the nine guns of 10.63 in . bore, and fifteen
energy is compensated for, while the penetration others of 5.90 in ., model 1887, that the Societe des is at least as great as that obtained with a heavier Forges et Chantiers are now making at Havre, and projectile striking with greater energy but at $\mathbf{a} \mid$ which will form the armament of some Greek ironprojectile striking with greater energy but at a \mathbf{a}
more acute angle. In 1886, the guns of 6.29 in
and of 4.72 in. of the 1885 type, which were mounted on board the Haytien despatch boat, the of forfeiture. In the same way a number of 12.60 in .
Toussaint Louverture, and which were only 30 (32 cent.), of 38 calibres, and of the 1888 pattern, coussaint Louverture, and which were only 30 (32 cent.), of 38 calibres, and of the 1888 pattern,
calibress in length, gave an initial velocity of 2030 ot. in course of construction for the Japanese coast-
and 2000 ft. with projectiles weighing 119 lb. and guard ships Matsushima, Itsukushima, and Hashi-

 a great number of experiments made in France and
elsewhere, on the expansion of powder charges, and elsewhere, on the expansion of powder charges, and
it is confidently maintained that a velocity of 2430 ft .
can always be relied on with guns of 42 calibres in

 $13.39-\mathrm{in}$. De Bange gun with biconical reinforcing

 has been obtained. Since that date, in consequence
of experiments carried out with the new slow-
burning powders, some modifications have been made in the design. These changes refer chiefly to the form of the powder chamber, and to the
density, weight, and nature of the charge, and it is
daimed as absolutely certain that the Canet guns of

Table VI．－General Particulars of Guns of Various Calibres made on the Canet System by the So
Fonges et Chantiers dela Mediterranee at Havre．
（From the Aide－Mémoire de l＇Officier de Marine，1890．）

			Nature of Gun．
		¢	Length in Calibres．
M Mone 0 coce 	 	 	Bore．
			Length of Bore in Calibres．
	 	 	Weight of Gun．
$\rightarrow \infty$ －	\＆		Weight of Charge．
あっだずあった。 quingion	 		Weight of Projec－ tile．
	\％\％itixitixivis ixy 4．	\％ NNy	Initial Velocity． Feet per Second．
	o 	 	Thickness of Iron Armour Plate that can be pierced at Muzzle of Gun．

that it should be thoroughly controlled by simple， compact，and easily managed appliances．Pro－ bably no manufacturers have done so much to develop the design and construction of mount－ ings for heavy guns as the great Elswick firm， especially sinco they combined with themselves the practice and experience of Mr．Vavasseur． It will be seen in future articles that，no less in mountings than in the construction of ordnance， M．Canet has shown a boldness and originality of design，which，while possessing many things in common with the Armstrong－Vavasseur practice， has such important and distinct points of departure， as to make a detailed comparison of the highest interest．

A valuable criticism on the Krupp system of heavy gun carriages made by a French writer may be referred to here．He points out that the effi－ ciency and rapidity in serving a gun depends to a large extent on the arrangement of the frame and the various appliances attached to the carriage． Rapidity of fire is in effect one of the essential con－ ditions of modern artillery，one of the principal purposes of which is to do the greatest possible amount of damage in the shortest time，before an enemy can carry out the same tactics．It is objected that the naval carriages made by Krupp are large and heavy，while the manipulation is difficult． At the same time the carriage properly so called is very high，and from its peculiarities of design， excessive strain is thrown upon the parts after each discharge；the brakes are placed very low down and the valves are closed by springs，that do not always work regularly．Almost precisely similar objections are urged against the De Bange
system of carriage，which is so designed that system of carriage，which is so designed that
many of the most important parts have tensile and bending strains thrown upon them，instead of being exposed wholly to compression．It is claimed that these defects are avoided in the new types of carriage made at the Forges ot Chantiers Works at Havre，and which，as we have said before，have many points in common with the Vavasseur system with important modifica－ tions．Thus the turning valve in the latter is replaced by an arrangement in the brake cylinder （to be described hereafter），which always exerts a constant resistance，resulting in an important ad－ vantage－it is claimed－on account of its relieving the carriage of considerable strain．Returning the gun to firing position can be effected with a varying speed，which is entirely under control，the move－ ment being regulated by an hydraulic apparatus and pump，which has the advantage of always keep－ ing the brake cylinders filled，when required，and which can be done with two or three strokes of the piston．The arrangement is also such that the gun is held absolutely secure upon its carriage in heavy weather．The training gear for elevating large naval guns is not worked by a handwheel mounted on a shaft，which is exposed to various risks，
but by means of a simple device connected with a hydraulic cylinder，and by which the operations can be very easily performed without handwheels． The introduction of a live roller ring beneath the firing platform is made to obtain a better distribu－ tion of pressure upon the baseplate and to facilitate the horizontal training of the gun；each of the rollers can be taken out for cleaning or renewal with very little trouble．The distance between the axis of the trunnions and that of the brake to lessen the strains caused by recoil，while，the carriage being a low one，the stability is consider－ able．Ammunition is brought to guns mounted in turrets by means of a central tube，which is morable with the carriage ：this arrangement possesses the
advantage of enabling the men serving the advantage of enabling the men serving the gun to
load at any time and in every position，and even load at any time and in every
when the gun is being trained．
In concluding this preliminary reference to the type of guns and carriages constructed by the Forges et Chantiers de la Méditerranée，it might be mentioned that these works are the only ones in France possessing a Polygon in which the trials of guns and carriages can be conducted at all angles of elevation．This Polygon，which is established
as a trial ground for the society and for the French marine，at Hoc，near Havre，possesses a very fine collection of testing apparatus of all kinds，as well as cranes and travelling bridges for handling weights as well as to Havre，by lines of railway，and it is here that important and interesting trials are being constantly carried out

THE ELECTRIC LIGHTING OF THE EDINBURGH EXHIBITION
 WHEN it is remembered that the Edinburgh

 Exhibition was originally suggested by electricians， to mark progress in the development of the science， and that，notwithstanding its subsequently ex－ tended scope，eloctricity still forms the distinctive feature，it will very naturally be assumed that the arrangements for lighting will be complete and exemplary．It is almost unnecessary to say that the application of electricity to the purposes of illumination will be exhibited in its many distinc－ tive phases．Many of the stalls will be separately lighted，and probably every type of motor will be requisitioned to provide the power for dynamos．It is yet too early to deal with such separate installa－ tions or with the arrangements for lighting railway stations and outbuildings with anything like com－ pleteness and accuracy．They are not yetin evidence， or completely fixed upon，and looking to the jealousies which exist in such a case it is at least prudent not to refer to any particular separate illumination at the present time．We therefore desire to deal with the general in－ stallation for lighting up the courts and grounds which have had preliminary trials，leaving the lesser installations to be dealt with later．The
complete arrangements，it may be said，have been carried out by the Electrical and Light－ ing Committee，and have been personally superin－ tended by the convener of that committee，Mr． A．R．Bennett，electrical manager of the National

Telephone Company in Edinburgh，who was one of the originators of the Exhibition and has taken a deep interest in the undertaking from its incep－ tion，having done good practical service in carrying it to its present state．
The engines used to provide the necessary motive power for the dynamos have been supplied，with one or two exceptions，by Messrs．Robey and Co．， Lincoln．Messrs．Alley and McLellan have supplied one of their well－known Westinghouse engines，and several gas engines and other motors are to be used． The lighting of the Concert Hall and reception rooms has been carried out by Messrs．King，Brown，and Co．，of the Rosebank Electric Works，Edinburgh， while the Brush Electrical Engineering Company， Limited，have fitted up the necessary plant for lighting the main buildings，Machinery Hall，loco－ motive annexe，eastern annexe，Art Galleries，and the general illumination of the grounds．The Brush Company seem now almost to have a monopoly of this kind of lighting for exhibitions，their plant being excellently well adapted for it，since it enables many lamps to be arranged in series on one circuit，and is free from complications and delicate appliances requiring constant adjustment．

The principal engine by Messrs．Robey is a 80 horse－power，nominal，compound horizontal fixed engine，fitted with Richardson and Rowland＇s patent automatic expansion gear．The cylinders， which are both steam－jacketted，are respectively 18 tin ．and 30 in ．in diameter，with a stroke of 40 in．Each cylinder has trip valve gear and the cut－ off on the high－pressure cylinder is capable of being varied from $n i l$ to three－fourths of the stroke，whilst the cut－off on the low－pressure cylinder is variable by hand when the engine is running．The engives work up to 65 revolutions，and the power is trans－ mitted from a flywheel 15 ft ．in diameter by $1 \frac{3}{4} \mathrm{in}$ ． ropes．The working steam pressure is 100 lb ．to the square inch，and the engines indicate 400 horse－ power maxinum．Both high and low－pressure cylinders have independent steam inlet and exhaust valves．The former consist of double－beat Cornish equilibrium valves fitted to each end of the cylinder so as to get a short steam passage，which enables the initia pressure at all times to be nearly as great as that in the boiler．Those on the high－pressure cylinder are under the direct control of the governor．The exhaust valves consist of a special arrangement of Corliss slide valve，which gives a quick wide opening to the exhaust with a very small travel．They are placed on the underside of the cylinders，to facilitate the efficient draining of the interior，and to enable the piston to work with the least possible amount of clearance．They aro worked by eccentrics upon the horizontal shaft driving the admission valve gear．The bearings are made in three adjustable parts of Babbit＇s metal，with lubricators for continuous running． There is a receiver，through which the steam passes from high－pressure to low－pressure，and this receiver is superheated by a current of high－pressure stesm from the boiler circulating through a coil of piping placed inside of it．The receiver is lagged with wood and sheet iron．The Messrs．Robey，it may be added，are sole makers of engines fitted with this gear，and they are made both single and coupled，high－pressure and condensing．It is claimed for the latter type that it does not use more than 15 lb ．of steam per horse－power per hour．This engine drives six Brush arc dynamos， each with thirty－five lights．
The next engine in point of size is of a some－ what different type，having a short stroke，with a higher speed．It is \＆ 65 horse－power nominal horizontal fixed engine．The cylindurs are 15 in ． and 26 in．in diameter，steam jacketted．The stroke is 28 in ．The high－pressure cylinder has Richardson and Rowland＇s patent automatic trip expansion gear，with Corliss slide exhaust；the low－pressure cylinder an ordinary rectangular slide having a variable travel．The revolutions made are 86 per minute．The flywheel is 12 ft ．in dia－ meter，and the rope by which power is transmitted $1 \frac{3}{4} \mathrm{in}$. thick．The working pressure is 100 lb ．，and the maximum indicated horse－power 320 ．The engine bedplate is of exceedingly massive con－ struction．The crankshaft is made of forged steel，with throws cut out of the solid and accu－ rately balanced and carried on three extra long bearings cast upon the engine bed．The bearings are lined with Babbit＇s metal，each made adjust－ able in three directions．The flywheel overhangs by the side of the engine bed，between it and an outbearing carrying the end of the crank－

LITERATURE.

Aid Book to Engineering Enterprise. By Ewing Mathe son. Second Edition. London and New York: E and F. N. Spon. (820 pages).
This valuable and well-known book has now reached second edition, both parts being combined in one volume instead of being in two as before. Some alterations have also been made in the text; a chapter on mining enterprise has been added, the chapter on the manufacture and uses of steel has been rewritten and extended, and reference has been made to some modern applications of electricity. The volume is one which ought to be in the hands of every one contemplating the inaugurathe hands of every one contemplating the inaugura-
tion of engineering enterprises abroad, as it clearly tion of engineering enterprises abroad, as it clearly
lays down the conditions upon which success delays down the conditions upon which success de-
pends, and the kind of information which must be obtained before plans can be properly drawn. Attention is also drawn to the various modes of forming contracts, and to the conditions necessary to the purchase of engineering materials.

The Railways of Scotland; their Present Position, with a Glance at their Past and a Forecast of their Future. By W. M. Acworth, Author of the "Railways of England." London: John Murray, 1890.
Mr. Acworth's work needs no introduction to the general public. His "Railways of England" proved such delightful reading that any other book from his pen is sure of a good reception; and all the risk it can run arises from the high expectations that it must fulfil. We may say at once that this volume is quite equal to its predecessor, without being in the least degree a copy of it. The circumstances of the Scotch railways are so different from those in the southern part of the island, that they present perfectly new features of interest. The most striking of these is the fierce competition which exists between them, the very thought of which would drive an English manager mad. For instance, two great lines carry passengers from Glasgow to Greenock, some 25 miles distant, at return fares of 2 s .6 d . first class, and 1s. 6d. third class. One would imagine that such traffic would not be worth caring for, but it evidently is, seeing what efforts are made to obtain it. The Caledonian was the only line for a quarter of a century; then the Glasgow and South-Western, at onormous expense, formed a new line which delivered passengers on the pier, instead of in the middle of the town, and gained nearly the entire traffic. In 1865, the Caledonian obtained an Act to carry their line forward to Gourock, three miles further, and after several enforced postponements they have lately completed this scheme, and have regained the bulk of the traffic lost more than twenty years ago. There is now a report that the Glasgow and SouthWestern Company contemplate carrying their line past Gourock to the Cloch, in order to regain their old position.

Of course it is not the local traffic to Greenock that excites the contest, but the excursion and holiday traffic to the coast, to Dunoon, Rothesay, and the many pleasure resorts of the west. The facilities for reaching these places are perfectly wonderful. In the half-hour after four in the afternoon eleven fast trains, with thirteen boats in connection, start from Glasgow, and there are corresponding trains back each morning during the tourist season. The fares by all these trains are very low-less than half those which prevail on trains starting from London, and yet the railways pay fair dividends.

Another peculiarity of the Scotch companies is that they have most extensive running powers over each other's lines. The Caledonian and the Glasgow and South-W estern both use the same road for their Greenock trains as far as Paisley. Carlisle Station is the joint property of the Caledonian and the North-Western, but the North-Eastern, the Midland, and the Maryport and Carlisle, on the English side, and the North British and South Western on the Scotch side, have running powers into it, and over a good many miles of the road outside it. The North British is under statutory obligation to compete with itself by bringing the Caledonian trains from Larbert and the north into its own Waverley Station at Edinburgh. Again at Larbert the east and west coast traffic meets (the Forth Bridge will, however, alter this), as well as the Glasgow traffic for the north, and is taken on to Perth by the Caledonian. When theScottish Central amalgamated with the Caledonian in 1865, and with the Scottish North-Eastern in 1866, the

North-Western and the Midland were given powers to run to Aberdeen and also into the Caledonian termini at Edinburgh and Glasgow.
The Forth Bridge threatens to intensify the competition north of Edinburgh by shortening the distances on the east coast. There has been great
uncertainty as to these precise distances, and we uncertainty as to these precise distances, and we Acworth admits may contain some trifling inaccuracies, in spite of the trouble he has taken to obtain it:

From London to Perth :
By weat coast is now 450 miles; will be 450 miles.
By Midland route is now $475 \frac{1}{2}$ miles; will be 455 miles By east coast is now 462 miles; will be 441 miles.
i.e., the east coast was 12 miles worse and will be miles better than the west coast.

From London to Aberdeen:
By west coast is now 540 miles; will be 540 miles. By west coast is now 540 miles; will be 540 miles.
By Midland route is now 565 ; miles; will be $536 \frac{1}{2}$ niles.
By east coast is now 552 miles; will be 523 miles.
i.e., the east coast was 12 miles worse, and will be 17 miles better than the west coast
The struggle will thus be carried on right to Aberdeen, since the west coast companies have definitely promised to do everything that the east coast may do, and it will thus enable the Great North of Scotland to compete on better terms with the Highland.
The work is by no means confined to instances of the way in which the Scotch companies contrive to earn dividends out of apparently unremunerative traffic. It commences with an account of the old wagon-ways constructed in the eighteenth century, and traces the progress of locomotion to the building of the Caledonisn line. The second chapter deals with the outlook for the future, particularly with regard to the changes introduced by the opening of the Forth Bridge. The third gives an account of the race to the coast, and desoribes some special features of Glasgow and Edinburgh traftic. The Great North of Scotland and the Highland Railways form the subject of the fifth chapter; while the last is devoted to minor features. The volume is thoroughly readable from and to end, and the information it conveys will render a long journey northward far less wearisome than it usually is. The passenger who understands the peculiar circumstances of the line over which he is travelling, and the difficulties the directors have to meet, will find a thousand things to interest him on the way, and will not give way to a feeling of irritation at every little inconvenience he may encounter.

BOOKS RECEIVED

I'Année Electrique ou exposé Annuel des Travaux ScientiAnnee Electrique ou expose Annuel des Iravaux Scienti-
fiques des Inventions. Par Pr. DelaHaye. Sixieme Année. Paris: Baudry et Cie. The British Guiana Directory and Georgetown, Demerars: C. K. Jardine. Aide-Némoire de l'Officier de Marine. Par Edouard Durassier. 4th Année, 1890. Paris: L. Baudoin et Cie.
Electric Tranomission of Energy, and its Transformation,
Subdivision, and Distribution. By Gisbert KAPP. Subdivision, and Distribution. By GIsBERT KAPP. Second Edition. London: Whittaker and Co.
The Mining Manual for 1890. By Walter R. Sinnerer. [Price 10s. 6d.]
actory Accounts; their Principles and Practice. By Emile Garcie and J. M. Frlls. Third Edition London : Crosby Lock wood and Son Stone: How to Get it and Hono to Use it. By MajorE. and F. N. Spon.

Des Ingenieurs Taschenbuch. Herausgegeben vom Verein "Hiutte." Vierzehute, vollig umgearbeitete Auflage. Mit 801 in den Texte eingedruckten Figuren und 1 Tafel. Berlin: Ernst and Korn.
Journal of the Royal Agricultural Society of England.
Third Series, Vol. I., Part I. London: John Murray. Third Series,
[Price 3s. 6d.].
Electrical Infuence Machines. By John Gray, B.Sc. London: Whittaker and Co.
Pumps : Historically, Theoretically, and Practically Considered. By Philip R. BJörbing. With 156 Illus-
trations. Treatise on the Arc New York: E. and F. N. Spon. Boston, U.S.A. : Boston Journal of Commerce Publishing Company.
Losses in Gold Amalgamation: with Notes on the Concentration of Gold and Silver Ores. By Walter M'Dremotr and P. W. Duffield. London and New York: E. and F. N. Spon.
wood (ready Rechoner. Manchester: John HeyEverybo
Things difficult to Remember and Tables of Reference. Things difficult to Remember, and Table
London: Saxon and Co. [Price 6d.]
The Function of Labour in the Production of Wealth. By Alexander Philip L.L.B., Edin. Edinburgh and

Regulations for Preventing Collisions at Sea as proposed for Adoption by the International al arine Conference held at Washington, 1889. Portsmouth: Griftin and Co. Les Machines d Eorire. Par F. Drouin. Paris: Charles Mendel.
The Art of Paper-Making. By Alexander Watt. London: Crosby Lookwood and Co.
Gas and Petroleum Engines: a Practical Treatise on the Internal Combustion Engine. By William Robinson, M.E. London and New York: E. and F. N. Spon. National Health. Abridged from The Health of Nations.
A Recievo of the Works of Sir Edvin Chadroick,
K. C.B. A Review of the Works of Sir Edwin Chadioich, K.C.B. By Benjamin Ward Richardson, M.D., F.R.S Notes on Permanent Way Material, Platelaying, and Point and Crossings. By W. H. Cole. London and New York : E. and F. N. Spon.
A Rudimentary Treatise on Coal and Coal Mining. By
Sir Warington W. Smyth, M.A., F.R.S. Seventh Sir Warington W. Smyth, M.A., F.R.S. Seventh
Edition, revised and enlarged. London : Crosby Edition, revised and enlarged. London : Crosby Lockwood and Son. [Price 3s.6d.]
Eork; an IUustrated Magazine of Practice and Theory. Edited by Francis Young. March, 1889, to March, 1890. Lo

Year Book of
Britain and the Scientific and Learned Societies of Great Britain and Ireland. Compiled from Official Sources. Shelley and Co.'s Complete Press Directory for 1890 . London: Shelley and Co. [Price 18.]
L'Exposition Universelle. Par Henri de Parville. Lettre-préface par A. Alphand. Paris: J. Rothschild. Chronological, Historical, and Heraldic Charts of the Royal
House of England from King Egbert to the Present Time. House of England from King Egbert to the Present Time.
By I. A. Timmis, Memb. Inst. C.E. London: Henry By I. A. Timmis,
Sotheran and Co.
The Elements of Machine Design. Part I. General Principles, Fastenings and Transmissire Machinery. By
W. Cawthorne Unwin, F.R.S., B.Sc., Memb. Inst. C.E. Eleventh Edition, revised and enlarged. London and New York : Longmans, Green, and Co. [Price 6s.] and New York : Rongmans, Green, and Co. Price 6e.]
Sinclive Engine Funning and Management. By ANais SiNCLAIR. Fourteenth Edition, revised and enlarged.
New York: John Wiley and Sons. New York: John Wiley and Sons.
Pocket Meteorological Tables. Short and Simple Rulcs for accurately determining Altitudes Barometrically, with Sundry Useful Tables. By G. J. Srmons, F.R.S. Fourth Edition. London: Edward Stanford. [Price 2s. 6d.]
Porce as an Entity with Stream, Pool, and Wave Forms. By W. SEDGWICK, Lieut.-Colonel R.E. London:
Sampson Low, Marston, Searle, and Rivington, Limited.
The Opening of the Aretic Sea. By H. A. H. Dunsporn, C.E. London : William Ridgway

Seventh Annual Report of the United States Geological
Surrey to the Secretary of the Interior $1885-86$ By Surrey to the Secretary of the Interior, 1885-86. By J.
W. Powel, Director. Washington: Government Printing Office.
Annual Report of the Chief of Ordnance to the Secretary of War for the Fiscal Year ended June 30, 1889. Washington: Government Printing Office.
Air Brake Practice. By J. E. Phrlan. New York :
Practical Mining. A Field Manual for Mining Engi-
ncers. By John G. Murphy, E.M. New York: D. ncers. By Join G. M
Notes on Electric Lighting. By the Rev. Grrald Mollor
D.D., D.Sc. Dublin: M. H. Gill and Son Gemeinfafaliche Darstellung des Eisenhuttenwesens. Hedes Eenhulenuosens. He Dusseldorf. 2 Auflage. Dusseldorf : August Bagel.

MODERN FRENCH ARTILLERY.

 No. XVIII.
The Gun Factory of the Forges et Chantiers

 de la Mediterranke-continued.The Société des Forges et Chantiers de la Méditerranée is, as we have said, the most important of the private naval establishments in France. The company possesses extensive shipbuilding works at La Seyne, close to Toulon ; engine works at Marseilles ; and at Harre, another shipyard and engine works, while during the last few years an ordnance factory on a very extensive scale has been created there. No doubt this last addition to the company's works would have been brought into existence many years earlier, had it not been for the restrictive legislation which put a stop to all enterprise in France so far as the manufacture of war material was concerned, and until the company were set at liberty to produce ordnance themselves, they were placed in the unsatisfactory position of seeing ships that they had built for foreign customers, armed with guns that had been purchased in England or elsewhere. As soon as the law permitted, the company set to work to alter this state of things, and they proceeded with the work in a manner that would have done credit to the most enterprising American spirit ; they were, it is true, exceptionally fortunate in having as the chief of their ordnance works, an engineer-M. Canetwho had been brought up in what was certainly one of the best possible schools, that of the Vavasseur

Ordnance Company, since amalgamated with Sir preferable to have a large branch establishment William Armstrong and Co. The influence of this at the opposite extremity of France, and to keep excellent training is evident in the work now pro- the new works entirely distinct from the parent duced at Havre and which we propose to describe company. And it was not by any means as a in considerable detail, illustrating, as it does, not factory for the service of the State, because while only the most advanced practice of ordnance manu- full privileges were granted as regarded foreign facture in France, but also a practice which is able trade, the Government arsenals proposed to retain to hold its own with that of works of far older date in their own hands the manufacture of all ordand greater celebrity ; in fact the most remarkable nance required for the army and marine. The feature of this, the latest development of the Forges et Chantiers Company, therefore, comForges et Chantiers, is that it has sprung up almost menced their new factory with the bold determinasuddenly into fame and must be reckoned as one of tion of entering into competition with the gunthe great gun factories of the world. The Havre makers of England and Germany-with Elswick ordnance works are indeed worthy of the great and Essen especially. At the same time should any company to which it belongs, a company that necessity unfortunately arise in the future, they employs about 8000 workmen, and has since it was would be in a position to render aid to the country, first established, supplied shipping to home and
ery different to that they had given in 1870 . The

three types of each, and from 6.5 to 15 cant $(2.56-\mathrm{in}$. to $5.90-\mathrm{in}$. bore). The other types provided for were as follows : Mortars of from 7.5 to 34 cent. bore (2.95 -in. to 13.39 -in.) ; howitzers from 7.5 to 34 cent. (2.95 -in. to 13.39 'in.); short and long siege guns from 7.5 to 34 cent. (2.95 -in. to 13.39 in.) ; siege guns from 90 to 270 millimetres (3.54-in. to $10.63-\mathrm{in}$.) ; and naval and coast defence cannon from 9 to 37 cent. (3.54 -in. to 14.5% in) Each of the calibres for naval service and coset defence was further subdivided into five types of | defence was further subdivided into five types of |
| :--- |
| $10,36,43,50$ calibres in length. By this system | 25, $30,36,43,50$ calibres in length. By this system there exist no less than twel

divided into a number of types.

Each different class of gun has its own form of breech mechanism, the leading principles being alike in all, but the details varying with the pur-

Fig. 188. Shrinking on tife rings of a 33-centimbtre gun.

Fig. 189. Lifting 33-centimetre aun after rings have been shrunk on.
foreign customers to the value of $560,000,000$ francs.
The Société des Forges et Chantiers de la Méditerranée was one of the most active assistants of the French Government during the Franco-German War, towards the close of which, when the State factories had utterly broken down, it manufactured large quantities of guns and other war material. During this trying period no less than 300 pieces of artillery of various calibres, as well as 1200 carriages, were made at Marseilles, and before the close of the war a well-organised ordnance department had been developed there. When peace was restored, all use for this department came to an end, for the State wanted no more guns just then, and sales to foreigners were impossible. Quite a number of years elapsed before the much needed change was made, years during which many people, besides M. Thiers, occupied themselves in bringing it about. The strong incentives of patriotism and profit were indoed great enough to maintain a constant pressure on the Government, and amongst those who kept the subject always to the front were M. Dupuy de Lome, vice-president, and M. DouëtPastre, general manager of the Forges et Chantiers Company. When the Society again began the manufacture of ordnance, it was under totally different conditions, and with a far wider scope ; it was not at Marseilles that the new works were started, as it was considered for every reason
works were started under the best possible conditions, all the experience painfully gained during the war was available; the rapid progress made by a few manufacturers was at the same time an incentive to competition and afforded valuable sources of information ; the possible field for business with foreign customers was almost unlimited, while the certainty of being able to aid the country in the event of necessity, gave additional zest to the enterprise. M. Canet, who was from the commencement appointed as chief engineer of the gun factory, was thoroughly fitted for the responsible position for which, as we have seen, his previous experience had prepared him, and he started with a somewhat bold but very practical scheme for the organisation of the works. This was nothing less than a complete programme or the manufacture of so large a series of ordnance, that it should comprise every possible variety that could be required by any nation, and for every purpose, according to our present lights on the subject; at the same time, while introducing into his plan a large number of original, and often very bold details, he held fast to all that experience had taught should be followed in the design and manufacture of heavy guns. One part of his plan was so to arrange the factory that it should be adapted to the production of a large series of different natures and calibres. This series comprised seven types of mountain and boat guns of 75 and 84 millimetres mountain and 3.95 -in. and 3.31 -in.); for quick-firing guns,
pose of the piece; there are in all six distinct patterns for field and moutain guns, for boat, quich firing, coast defence, siege, and the heaviest nature of ordnance. In the same way for the various carriages, a special type is made for each class of gun, so that a complete system has been elaborated for all the variations in gun construction that are roquired, at all events for some years to come.
The works which are specially devoted by the Forges et Chantiers Company to the manufacture of guns, are in Havre, and close beside the older machine shops of the company and with which they are connected, a very useful arrangement, as the two establishments work together, a great deal of the machine work for the carriages being done in the latter factory; this department is under the charge of M. Cazavan. All the work connected with the construction of turrets and the whole of the hydraulic machinery is executed at the Seyne works, near Toulon, under the direction of M. Laganne. The central offices of the company are in Paris in the Rue Vignon, and it is there that all designs for guns, carriages, \&c., are prepared by M. Canet. Finally, we may mention that the artillery works are under the management of Majo Roger, a French artillery officer. One of the most important adjuncts to the company's gun factory is the Polygon or firing ground, which is located at Hoc near the mouth of the Seine; it is situated not far from the works, with which it is connected by
lines of railway, and is very completely appointed for the conduct of every kind of trial with ordnance of all calibres. From what we have said it will be readily understood that not only the Forges et Chantiers Company, but the whole country, is proud of these ordnance works, of recent origin, it is true, but nevertheless so complete that they succeed in obtaining and executing satisfactorily orders for foreign powers, which, until recently, could not have been placed in France at all.

We may now commence a description of the factory, taken partly from a notice published a short time since by our contemporary, Le Genie Ciril. The artillery works occupy a large rect-
angular space of ground bounded on the north by
side is an annexe containing the offices, and there is end of the western bay, in which steel rings and here a special workshop, to which reference will pre- jackets are stored, has a 7 -ton hand winch. All sently be made, 39 ft . span and of the same height. the travelling cranes are driven by endless belts, The main buildings are wholly of iron, and the roof and are controlled by friction gearing. The engravprincipals are placed 19 ft . 8 in . apart, being car- ing (Fig. 187) on page 566 shows the interior of the ried on double columns that serve at the same time carriage shop. The pit constructed for shrinking to support the travelling cranes; the two-page on the steel jackets and reinforcing rings is 26 ft . 3 in . illustration (Fig. 186) published this week gives a deep and about 8 ft . in diameter; it is situated at good idea of the interior of the principal shop. the north end of the central nave. This pit is fitted Considerable trouble was experienced in obtaining with all the appliances required for heating the good foundations for these buildings, and for the rings by gas, as well as for handling the heavy heavy tools they contain. The ground at this masses of steel that have to be raised, lowered, and heavy tools they contain. The ground at this
place consists of sand and marl for a depth of 30 ft .
shifted. Figs. 188,189 , and 190 illustrate the or 35 ft ., and it was necessary that the columns, as \quad method of handling heavy guns in the shops during well as many of the heavier machines, should be, and after the process of shrinking on the rings.

Fig. 190. Travelling crane in gun shops shiftina a 39 -centimetre oun.
the railway running from Paris to Harre, on the carried on a pile foundation. Motive power for There are several smaller pits, in which field and south by the Rue d'Harfleur, to the west by the this workshop is furnished by two compound engines other light guns are put together. old machine shops of the company, and to the east of the marine type, which can be driven separately by waste ground belonging to the company, and or coupled together, according to requirements; reserved by them for future extensions. The each of them is of 80 horse-power nominal, but they principal entrance to the factory is by the Rue can develop 120 horse-power; the ordinary workd'Harfleur, where the offices are situated, and by ing speed is 90 revolutions per minute, and they which materials of a light description are brought are furnished with steam by three Galloway boilers, by road ; at the opposite end the railway is utilised for the transport of heavy freight. Sidings from the main line, and a complete system of lines laid down over the works, allow of an easy distribution of material, while another series of lines extending to the quays and basins of Havre give full facilities for shipping and unshipping the heaviest objects taken into or brought out of the works. The Polygon is situated about four miles from the factory. The works include a large number of buildings, which occupy a total surface of about 100,000 square feet; the general arrangement adopted is that of a number of separate structures adjoining each other. These extend from north to south for a total length of 420 ft ., and communicate with one a total length of 420 ft ., and communicate with one into twenty bays of about 20 ft . each; in the centre is a large shop of 55 ft . 9 in. span and a height of 30 ft . to the springing of the roof principals. The two spans adjoining this central bay,
and communicating with it, are each of them 30 ft . in width and 20 ft . high to the springing of the roof. On each side of the outer bsys are a number of buildings devoted to miscellaneouspurposes; on the west

THE INSTITUTION OF MEOHANIOAL

 ENGINEERS.ON_{N} Thursday and Friday of last week the spring general meeting of the Institution of Mechanical Engineers was held in the theatre of the Institution of Civil Engineers by invitation of the Council of the latter body. There was a very short programme, for it comprised only the address of the President, Mr. Joseph Tomlinson, and a single paper; but the importance of the meeting must not be estimated by the number of communications brougbt forward, for the paper read dealt with brougbt forward, for the paper read dealt with
results of such value as to thoroughly warrant the results of such value as to thoroughly warrant the
time devoted to its discussion. Mr. Tomlinson's time devoted to its discussion. Mr . Tomlinson's
address we print in full on page 575 of the present issue ; it will be found on peruasal to be exceedingly interesting and of considerable historical value. In illustration of his address Mr. Tomlinson had also got together a very extensive collection of photographs, \&c., of early and recent locomotives, and this collection, which was exhibited motives, and this collection, which was exhibited
during the meeting, was examined with much during interest.

Marine Engine Trials.

The single paper above referred to was contributed by Professor Kennedy, and constituted the second report of the Research Committee on Marine Engine Trials. As our readers will remember, the

PASSENGER ELEVATOR AT STOCKHOLM.
(For Description, see Page 32.)

MODERN FRENCH ARTILLERY.

 No. II.Whilst in England, France, and the United States, the respective processes of making guns by built-up wrought-iron coils, by cast iron reinforced with steel rings, and by cast iron alone, were followed, Mr. Frederic Krupp, of Essen, had commenced the manufacture of ordnance upon an altogether different principle which, in later years, was to be amalgamated with the English, and subsequently with the French system, and form the type upon which the most powerful ordnance of the present day is constructed. As early as 1851, Krupp had made guns forged out of solid steel ingots, and the first example of this kind of gun construction was seen in this country at the great Exhibition of that year. Following this direction, Krupp gradually increased the means of production at his disposal, not only as regards quantity but weight also, and at the London Exhibition of 1862 he surprised the world by forged ingots of crucible steel, as well as by finished guns, far larger that had ever been turned out before in a single piece ; the 21 -ton steel ingot which he displayed would look but small beside the 100 -ton ingot that was exhibited last year at the Paris Exhibition by the St. Chamond Company, but it was, for its time, quite as marvellous a production. In January, 1861, the capacity of the Essen works was considerable, judging from the fact that they were able to produce daily two steel ingots suitable for $8-\mathrm{in}$. guns, or larger numbers of smaller bores; they also possessed a steam hammer of 40 tons, which in those days was of tremendous proportions. Besides a number of small-calibre guns which Krupp was then
manufacturing in large quantities for foreign coun- and six shots; after these extended trials the gun tries-Belgium, Austria, Russia, \&c.-he showed was found to be uninjured, and it was determined at the Exhibition of 1862 a 7 -in., an $8.12-\mathrm{in}$., and, not to test it further. An experimental gun of the a $9-\mathrm{in}$. gun; the latter was then by far the largest same type had previously endured 2000 rounds gun ever forged solid, and was intended to fire $250-\mathrm{lb}$. with heavy charges, when with a second series of projectiles; it weight was $18,000 \mathrm{lb}$., and its price tests it burst with the fourth round. about 2000 . ; it was either intended as a breechloader or as a muzzlo londer if the breech ond were closed by a solid plug. This gun was one of a large number which Krupp was then making for the Russian Government, an order which included $5.9-\mathrm{in}$. guns, besides a quantity of $8-\mathrm{in}$. and $6-\mathrm{in}$. bores ; in addition to these he was also constructing for the same Government some $11-\mathrm{in}$. breechloading guns, while others of $15-\mathrm{in}$. bore were under consideration. Although, as was to have been expected, a certain percentage of this class of ordnance failed under moderate tests, its general powers of resistance were unusually great. In 1862 the British acquired three Krupp breechloading guns, a 20 -pounder, a 40 -pounder, and one of 110 lb ., the latter being of $7-\mathrm{in}$. bore. These guns and the beginning of 1863 , with very favourable results, while on another occasion a 12 -pounder was filled to the muzzle with powder, shot, and broken shell, and could not be burst. Several years before, in 1857, two guns of similar calibre, but not rifled, were also put to extreme test in Paris;
these were each fired 3000 times without injury, and afterwards one of them was used as a larget and thus broken. The other was fired twenty 6.6 lb . of powder and two shot; ten times with 6.6 lb . and three shot, and six times with 13.2 lb

About 1863 the Bessemer process was attracting much attention and great things were expected from it for producing gun material. It was not probable that at a time whenimprovements in ordnance formed the burning question of the day, Mr. Bessemer would not put the capability of his steel through a practical test for this purpose ; accordingly quite early in the course of his practice-too early for the success of his experiment-he constructed a Bessemer steel gun, of which the principal dimensions were as follows : Length of bore, 7 ft .; diameter of bore, 4.75 in ; maximum outside diameter, 9.5 in.; thickness of walls, 2.37 in .; weight, 1070 lb . This gun was altogether too light, nevertheless it resisted severe tests before it failed. Five series of three rounds each were fired with an increasing number of spherical shot, from two in the first series to seven in the fifth; after these, two rounds were fired with eight shot, the powder charge being 2.2 lb . throughout; the gun burst violently during this last series owing to the wedging of the shot. last series owing to the wedging of the shot.
It should be mentioned that although Mr. Bessemer's name is but slightly associated with the early history of modern ordnance, his influence and investigations-to say nothing of the revolution which he had made in the steel industry-assisted greatly in the rapid progress of gun construction, and it was Mr. Bessemer who was one of the first
to propose to the Third Napoleon, the use of steel for heavy guns in France. In fact at one time it appeared that he was going to rank amongst the prominent gunmakers of the world, for in the London Exhibition of 1862 he showed a 24 -pounder steel gun which was the ninety-second that had been made by Which was the ninety-second that had been made by
Messrs. Henry Bessemer and Co.; the prices charged Messrs. Henry Bessemer and Co.; the prices charged
at that time for gun steel varied from 4.5d. to 6.5d. a pound. Both Messrs. John Brown and Co., and Messrs. Naylor, Vickers, and Co., of Sheffield, manufactured comparatively large quantities of steel ingots for making guns ; the latter works in 1864 were able to produce 10 -ton steel forgings. A 20 -pounder Armstrong gun made with a steel tube supplied by Vickers and Co., fired 100 rounds tube supplied by Vickers and Co., ired 100 rounds
with a service charge of 2.5 lb . and with cylinwith a service charge of 2.5 lb . and with cylin-
drical projectiles, increased every tenth round from 20 lb . to 200 lb . ; the length of the last series of these shots was only 15 in . shorter than the bore.
We have seen that the French lay claim to the first proposal of riffing guns, on behalf of Captain Treuille de Beaulieu; and that in 1840, Professor Treadwell, an American, was advocating a similar device; both these inventors, however, appear to have been anticipated by some years, appear to have been anticipated by some years,
and it would seem that the idea is due to a Belgian, Montigny, who, after vainly endeavouring to persuade his own countrymen to experiment with his idea, found better fortune in Russia, where trials were conducted with 12 -pounders rifled under Montigny's directions ; the results, however, were unfavourable, and the scheme was abandoned not to be revived. Cavalli, a Sardinian, in 1845, and Wahrendorf, a Swede, in the following year, both proposed methods of rifling; the device of the atter is worth recording, since it consisted in coating the projectiles with lead, which, in a modified form, was largely adopted at a later day. Beaulieu's method of rifling, which was in practical use during the several Algerian campaigns, and afterwards, in 1859, on a much larger scale in the Franco-Austrian war, was afterwards adopted by the British Government. The system consisted in the use of twelve metal studs, arranged in two rings around the projectile so as to project in the surrounding grooves ormed in the bore of the gun; on being fired these studs took their bearings within the grooves so as to give the desired location to the projectile. This method answering so well with smaller calibres; the French began to apply a modification of the system to heavier ordnance. First they commenced with two shallow elliptical grooves opposite each other, a uniform twist being given in some cases, and a gaining twist in others. It was soon found that this method was entirely imperfect, and that the shot would not centre themselves on the two bearings thus provided; this led to the adoption of three grooves within the bore and the definite employment of the gaining twist, while the projectiles were cast with circular projections covered with white metal to take their bearing in the grooves. In this way a number of cast-iron 30 and 50 -pounders, strengthened with cast-iron 30 and 50 -pounders, strengthened with rings as already described, were manufactured.
The old 30 -pounder, reinforced with steel and The old 30 -pounder, reinforced with steel and
rifled, constituted in 1861 the French standard naval gun ; it weighed 8240 lb . and was of 6.5 in . bore; its charge varied from 8 lb . to 26 lb ., and it threw $99-\mathrm{lb}$. projectiles; it was rifled with three grooves of the form shown in Fig. 3. Both the Austrian and Russian governments, who naturally followed with the deepest interest the experiments

that were proceeding in France, very quickly adopted the French system of rifling and studded projectiles with certain modifications suggested by their special requirements; the same remark applied in fact to so many European countries that
the method may be said to have become universal. the method may be said to have become universal.
In England for many calibres it was substantially
adopted, and the time had not yet come for Krupp
to take the lead in manufacturing ordnance for to take the lead in manufacturing ordnance for
many of the great powers of Europe. The Whitworth system, which was patented as early as 1855, was wholly different; the bore of the gun was, broadly speaking, hexagonal, and a projectile which was first turned cylindrical, was afterwards cut with a corresponding number of flat sides to fit the rifling; in the early days results were obtained with this system which surpass anything pre-
viously obtained. In 1862 a $130-\mathrm{lb}$ shell of this viously obtained. In 1862, a 130 lb shell of this type, with a bursting charge of 3.5lb., was fired with a 27-1b. charge of powder; it passed through a $5.5-\mathrm{in}$ Minotaur ; this shell penetrated the target, bursting in the backing; the range was 800 yards. A form of rifling very early adopted by Krupp was that known as the compression system, in which the shot was larger than the bore of the gun, and was passed through the breech into an enlarged loading chamber; the projectile in this case was surrounded by a number of leaden rings, which were kept in place by corresponding grooves in the hot. This was an improvement on Wahrendorf' plan that was proposed in 1846, and was quickly followed by Armstrong and the Royal Gun Factory
at Woolwich. The Prussian rifling consisted of a large number of very shallow and narrow grooves which were intended to give the leaden rings a large bearing. The early form of the grooves in the Prussian system of rifling was practically rectangular, as shown in Fig. 4; the Armstrong modification is also shown in Fig. 5. As this system involved making the chamber in the gun larger than that of the bore it was obviously unsuited for muzzle-loaders, and to overcome this difficulty, Mr. Armstrong invented his system of shunt rifling, which was so arranged that the shot could easily be forced home from the

Fig. 10.

muzzle with the shot going in by Fig. 7, and the same section with the shot coming out by Fig. 8 . they are lower down, and are stepped at two levels, the lower level corresponding with the entire rib, and the higher level being narrower, so that the projectile will only enter by the low level or deeper part or portion of the groove. The high level runs into the muzzle parallel for 8 in . in a 7 in . gun where an incline commences running off to the low level 14 in . lower down the bore. Supposing the spiral direction of the groove to be such that the shot in going down would hug the right side of the groove as viewed from the muzzle, then in coming out it would hug the left side, because the rotation would be in a contrary direction; as the shot goes down the right side it runs against a curve or switch, which deflects it to the side upon which the high level is situated. But at this point the high level has become extinct, so that the shot runs easily without compression all the way down. In coming out the shot is regularly revolved by the straight side of the groove, but slides along the sides and bottom of the bore until it reaches the incline, when the compression commencing gradually squeezes it up into the middle of the bore, so that it leaves centred and tightly nipped." Aftera very short time the use of zinc strips gave way to a series of brass studs arranged in rows and of different forms to serve the special purposes required; one row round the base guided the shot as it entered the gun, the second row rested on the bottom of the grooves to allow the shot to run home easily, while in the larger calibres, strips were introduced to bear against the sides of the grooves and insure rotation. This method of rifling was speedily adopted in Russia in a somewhat modified form. A curious system of rifling was very largely and successfully adopted in the United States, known as the expansion system ; the lands and grooves were almost of equal width and varied from $\frac{3}{8} \mathrm{in}$. to $\frac{3}{4}$ in. and about ${ }_{20}^{1} \mathrm{in}$. deep for smaller calibres, the dimensions for larger guns being about twice as great ; the rifling, excepting in the Parrot guns, was always of a uniform twist. The projectiles was always of a uniform twist. The projectile
were of cast iron and were made with a number of were of cast iron and were made with a number of
longitudinal slits, converging from the outside of the shot into a central opening; these slits were filled with soft metal, and when the gun was fired the pressure of the powder gases within the central opening forced the soft metal outwards and made it take its bearings in the grooves. The late Mr. Hotchkiss, whose name has become famous in connection with his system of revolving cannon and rapid-firing guns, adopted a somewhat different system; in his projectile the base was cast of a reduced diameter and a cast-iron cap was fitted to it, leaving a circular space between the top of the cap and the body of the shot ; this space was filled with lead, and when the charge was fired the powder pressure forced the cast-iron cap further upon the socket made in the projectile, at the same tine squeezing out the lead and forcing it to enter the grooves; from the commencement of the American War up to the end of 1863, Mr. Hotchkiss had delivered more than a million and a half of these projectiles to the United States Government, and was at that time still turning them out at the rate of 3000 a day. It may be mentioned that ranges up to 6000 yards were commonly made with field guns fired with these projectiles, and that very accurate practice was obtained at that distance.
driving edce coluc in
FIC. 9

driving edece comine our
gsosf.
muzzle and then turned round, so that when it was fired it would take its bearing on a shallower part of the grooves, and so receive the necessary rotation. This method is illustrated in Figs. 6 to 9, taken
from Holley's "Ordnance and Armour," and may be from Holley's described in detail, as it was an invention of some considerable importance at the time. "The projectile is fitted with three bars of zinc abutting agains The tops of the zinc bars are sometimes notched, as shown, to facilitate compression. The outsides of the zinc bars bear against the lands of the gun and rotate the projectile. The development of one of
the grooves is shown in Fig. 9, a section of the

INCLINE

Fig. 9 is a section of the Hotchkiss projectile, which was very closely followed by Mr. Lynall Thomas in this country ; it was with a projectile of this character that the greatest range recorded up to that date (1864) was obtained - 10,070 yards, or nearly six miles; the projectile was a 175 lb . shot fired with a $27 \cdot 1 \mathrm{~b}$. powder charge at an elevation of 35 deg. from a 7 -in. steel gun weighing 7 tons and rifled with seven grooves, made by the Mersey Iron Company. The Blakeley Ordnance Company, which, during the American War, did a very large business in ordnance and projectiles, made great quantities of shot and shell to be used in their own and in Confederate guns, attached a copper cup by
means of a screw to the base of the shot, which was expanded by the pressure of the powder gases; the forward part of the shot was supported by a number of soft metal studs. The first idea of this kind appears to come from America, where large quantities of shot and shell were used both by the Federal and Confederate armies having brass cups cast into their base. In the Parrot rifes a thick brass ring was placed at the base of the projectile, which served the same purpose as the lead ring in the Hotchkiss system. It is needless to say that invention was as busy in designing projectiles as in scheming guns, but with the exception of the Whitworth flat-fronted steel shell, all the numerous forms and methods proposed are about as obsolete as the guns of the same period; the chilled castiron shot of Sir William Palliser, which for so many years were, and still are, the standard pattern adopted by the British Government, were not then invented, though in 1864 he had already made experiments in casting spherical shot with a chilled surface.
It is rather interesting to recall the fact that while for small calibres Mr. Armstrong had shown conclusively the advantages of breechloading, it was not considered possible in England to adapt it with uccess to large guns; the general opinion on the sub ject is embodied in a report of a Select Committee of Ordnance in 1863, which states, "That the preponderance of opinion seems to be against any breechloading system for the larger guns." A want of reliable material appears to have been recognised as the principal obstacle to successful breechloading, both Armstrong and Krupp had made 7-in. guns, throwing $110-\mathrm{lb}$. shot and loaded from the breech, but the powder charges were low and the weapons inefficient. All the great authorities at that time were advocates of muzale-loading, and the conclusions to which they came, influenced gun construction, in this country, for many years. Mr. Armstrong, Sir Joseph Whitworth, Captain Coles, were all unanimous in advocating muzzle-loading for heavy guns, chiefly on account of the structural weakness involved by the modes of construction of breechloading systems then in use.

HELIOMFTER AT THE CAPE OF GOOD

 HOPE OBSERVATORY.
(Concluded from page 6.)

We have now to speak of some further details connected with the sleeve 16 shown by Figs. 2 and 3 on page 4 ante. In addition to the friction wheels 35 already mentioned, the flange of this sleeve next the objective carries two indices, 65, for the position circle, while two other indices, 66, for the declination circle are carried by the central portion of the sleeve as shown in Fig. 3. Both the circles just mentioned are read from the eye end of the telescope by the microscopes 37,37 , which are carried by mountings 67 , a prism 68, occupying half the field, being provided for reading the declination circle, while the line of sight through the other half

Fig. 7.
of the field passes direct to the position circle. By this arrangement the provision of separate micro scopes for each circle is rendered unnecessary. The micrometers with which the microscopes 37 are fitted resemble that provided for reading the divisions of the object-glass slides. They are, however, provided with duplicate screws and sets of wires, ipage of the divisions of the two circles, with the
two sets of micrometer wires as seen in each micro scope, is shown in Fig. 7 annexed. From this view it will be seen that a diaphragm has been inserted in each half of the field, one diaphragm having a semicircular and the other a triangular notch in it so as to clearly distinguish the scules of the two circles. The necessary illumination of the field is given by an incandescence lamp contained in a casing having two bull's-eye lenses 70 , throwing the light on diagonal reflectors 69 provided at the ends of the cross-tubes of the two microscopes.
The arrangements for rotating the telescope tube and thus adjusting the line of division of the objective to any desired angle, are also shown by Figs. 2 and 3, page 4, and by Fig. 6, page 3. Four different movements may be imparted. The quickest movement is effected as follows: At the eye end of the telescope (see Fig. 6, page 3 aute) is a hand ring 73, which runs between friction wheels, and is provided with teeth on its inner periphery. These teeth transmit motion to a pinion on a spindle carrying at its other end another pinion, which through an intermediate wheel gives motion to the inner occular tube, the end flange of the latter carrying a geared ring 72 (see Figs. 2 and 3). The transmission spindle just mentioned carries at its end a head 74 (see Fig. 6), which if turned directly affords the second speed. The fourth, or slowest speed, is given by means of a tangent screw 75, Fig. 2, which is carried by a ball bearing on the flange of the telescope sleeve, while ts nut is double-jointed to a ring 76, which encircles the flange of the inner cocular tube. This ring is provided with a clamping screw 77, which through the intervention of bevel gear and rods is operated rom the eye end by means of the handwheel 78, Fig. 6. In the same way the tangent screw 75 is also operated from the eye end by the handwhee 79. Finally, the handwheel 80 is connected by gearing to the rod carrying the handwheel 79, and can thus be used to give the latter a more rapid motion than if used direct ; this constitutes the third speed of movement
It will thus be seen that near the star-shaped head of the outer eye-piece tube, which is not capable of rotation, we have the hand ring 73 and the four handwheels 74, 78, 79, 80 giving position movements to the object-glass mounting ; also the bearings for the four keys 18, 19, 20, and 21 by which the declination clamp and slow motion, and the right ascension clamp and slow motion are respectively operated; and also the supports for the microscopes 37 by which the declination and hour circles can be read. Close to the microscopes will be likewise seen two small slates 81, for record ing observations, and near them are also two knobs, 82, for moving the telescope by hand.
The finder 83 (see Fig. 1, page 12, and Fig. 6, page 3 ante), is of 3.15 in . aperture and 1 ft .7 in . ocal length; it has a field 4 deg. in diameter, and is provided with a micrometer in which a right and eft-hand screw shifts two wires simultaneously from the centre to the borders of the field. This arrangement enables the observer to take in the large field of the finder an approximate measure of two objects to be afterwards dealt with in the telescope. The object-glass of the finder was made by Dr. Schroeder.

The various parts of the eye-piece end with which we have just been dealing are fixed, as we have said, to the outer casing tube, which does not revolve with the telescope. Adjoining these, but moving with the telescope, are the ordinary micrometer 84 (see Figs. 1 and 6), the registering micrometer 85 at the end of the microscope for taking readings of the divisions of the object-glass slides; and the three keys 30,31 , and 32 respectively operating the object-glass slides, the screen-wheel, and the radial screen shutters. The key 31 carries a finger moving over a graduated scale, and it also moves a small wheel shaped like the screen-wheel and moving with the latter.

The registering micrometer 85 is mounted on a slipping piece, so that its fixed wires can be adjusted in the same way as those of the micrometer 61 (for examining the divisions of the object-glass slides) already described. This micrometer 85 is so arranged that instead of taking the readings from the drumhead of the micrometer screw and an adjacent arc showing the total number of revolutions, an impression is made upon a travelling paper slip. The impression is produced by the action of a quick-threaded screw.

The illumation of the ordinary non-registering micrometer is so arranged that the light of an
incandescent lamp enters from behind. The drum of the micrometer screw has its figures reversed, and the readings are taken by means of a small mirror in which the illuminated graduations are reflected. The arrangement is such that a farsighted observer scarcely has to move his head to read the micrometer ; when required, however, a small magnifying lens can easily be added.
The electrical leads for the illumination of the instrument and for bringing the head at the eyepiece end into communication with a chronograph, comprise four wires which emerge from the upper part of the column, as shown in Fig. 1, page 12. Two of these wires split into two pairs, of which one pair convey the lighting current to the two microscopes for reading the hour circle. The remaining four wires pass down to the counterpoise 11, the current entering there through four contact rings to leads which pass through the polar axis. At the large opening in the declination sleeve the current is again transferred by suitable contact arrangements to leads passing through the declination axis whence two wires pass to the chronograph contact apparatus at the eye end. The remaining two wires again split, one pair of wires passing to a switch near the end of the outer occular tube, while the other pair pass to the two large contact rings 39 behind the position circle, thus conveying the current to the revolving part of the telescope. Three incandescence lamps have to be illuminated by these last-named leads. Of these lamps, one, 64 A (Fig. 4, page 5), has already been dealt with ; the second (at the eye end) illuminates the drum of the micrometer 84 at the eye end, the divisions of the occular draw-tube and the diac and hand denoting the positions of the screens and shutters at the object-glass end ; the third (also at the oye end) sends its light on to the small mirror 64 (Fig. 4), which, by reflection, illuminates the field. The light of this last-named lamp can be reduced at pleasure by the introduction of resistances ; the two others can be turned on or extinguished independently by means of a switch on the inner occular tube. Another switch on the outer occular tube conveys the current either to lamp 69 on the cradle 16 of the central tube (see Fig. 3, page 4), and simultaneously to two lamps for the microscopes for declination and position readings (lighting also the small slates 81); or alternatively to a light for the micrometer of the finder. This last current, of course, has to be convejed through contact rings as the micrumeter has a movement of rotation.

The clockwork by which the telescope is given its diurnal motion in right ascension stands at the foot of the central column, as shown in the general view, Fig. 1, on page 12 aute. From the clockwork the motion is transmitted by the shaft 87 , and the arrangement of bevel gear already mentioned to the worm 4 which drives the hour wheel. A noticeable feature in the clock-driving arrangements is the form of governor used. This is an elastic pendulum 89 consisting of a long steel rod rigidly fixed at its lower end, and carrying at its upper end a heavy weight. At the top of this weight is a small knob which is caught by a fork projecting from the last vertical driving shaft of the clockwork. The weight is prevented from occupying an exactly axial position, and thus when driven round by the clock it describes a circle, the radius of which is dependent upon the speed of rotation and the resistance to flexure of the steel rod by which the weight is supported. The increase in the radius of this circle due to the action of centrifugal force consequent on a slight increase of angular speed thus produces a much greater increase in the actual velocity of the weight, and thus enables the inertia of the latter to equalise considerable variations in the relation of the driving power to the resistance. The capability of this governor for absorbing surplus power depends upon the molecular friction set up by the bending of the steel rod. This governor is identical in principle with that long used on the Hughes printing telegraph instruments, butwe believe that it was independently invented by Messrs. Repsold, whose application of it to the driving clockwork of telescopes is certainly original. Its performance is, we understand, most satisfactory

The observing reat used with the heliometer we are describing is clearly shown by the general view, Fig. 1 on page 12 ante, and it is of the same pattern as that supplied by Messrs. Repsold to the $30-\mathrm{in}$. refractor at the Pulkows Observatory. The timber frame 91 , slightly raised above the floor line, runs on four wheels, the axes of which, if produced,

THE GUN FACTORY OF THE FORGES ETCH

FIG. 186. GENERAL VIEN

JTIERS DE LA MÉDITERRANÉE AT HAVRE.

age 555.)

N CONSTRCCTING SHOP.

THE GUN FACTORY OF THE FORGES ETCl
(Por Destripl

Fig. 191. One hcydbbb-rov if

Fig. 192. Section of 32-citiofich

NTIERS DE LA MEDITERRANEEAT HAVRE.

Page 586.)

and 32 -centimetre 66-ton aun.

OMEMES

for the japanese government.

MODERN FRENCH ARTILLERY.

 No. XX .The Firing Grounds of the Forges et Chantiers Company at Havre.
The Forges et Chantiers de la Mediterranée is the only private company manufacturing ordnance in France that possesses a complete and wellequipped firing ground. The importance, or rather the absolute necessity of such an addition to a gun factory, may be readily imagined. With the ever-increasing demands for more powerful weapons, and the rapid strides being made with the new explosives, the art of heavy gunmaking becomes less than ever dependent upon theory and more dependent upon practice. And apart from the fact that principles of design can now be often confirmed or refuted only by experiment, there are confirmed or refuted only by experiment, there are numerous details of the highest importance, the
value of which can only be ascertained on the firing
facturing company, to be added to the price of production, and paid for gradually by the purchasers of these costly, weapons. To the successful gunmaker a well-equipped polygon possesses the same importance as a good laboratory to the suc cessful scientist.

The plan, Fig. 193, gives an idea of the location of the firing grounds of the Forges et Chantiers, and its position relative to the rest of the company's works. They occupy a large area on the north bank of the estuary of the Seine, here of very considerable width, not far from the shipyard, and connected to the orduance and general works of the company by a line of railway laid partly on the high road, crossing the Tancarville canal that terminates a little to the westward in its own system of docks and basins that connect it with the port of Havre. Two other lines of railway belong to the company, one joining the main system of the the company, one joining the main system of the
Western Railway Company to the east, and the

plan of the works and firing grounds of the forges et chantibrs de da mediterrange at havre.
ground. The efficiency of fuzes; the best method of making up and exploding charges ; the testing of each detail of breech mechanism, and of different forms of obturators; the examination of the behaviour of hydraulic brakes, and the carriages to which they are attached ; all these and many more, form subjects for continuous and anxious trial during the long and tedious work of perfecting a new design, or modifying standard types to withstand more severe conditions. It often happens that the most carefully conceived plan breaks down utterly under test, not from any fundamental defect in the design, but for want of proper proportions that can be only decided by the ordeal of fire, which determines that this geared wheel must have a certain amount of play, that that one must have none, that such a pin must be a tight fit, and such another must be slack and so on through a series of slight changes which would not have been thought desirable by the most careful engineer, and which no prevision could have suggested. Results otherwise unattainable are thus rendered possible loy a system of trial and error, in which the most minute features of every experi ment are carefully recorded by a trained staff, and practice has to be modified according to the direcpractice which the results obtained, indicate. Of course tion which the results obtained, indicate. Of course
this experience is very costly to acquire ; gunnery experiments at the present time can only be effec tively pursued by very wealthy manufacturers or by governments. Some of the smokeless powders now employed in France cost no less than 15 francs the kilogramme, so that a 6 -in. quick-firing gun will readily consume more than 50 . worth o explosives alone during ailes often exceeds 1001 charge for the larger calibres often exceeds cost of for powder. To this has to be added the cost of
projectiles, fuzes, \&c., to say nothing of damage, projectiles, fuzes, dc. ${ }^{\text {a }}$ to say nothing of damage,
deterioration, and the heavy wear and tear in separable from the terrific shocks resulting from firing heavy charges. A trained and costly staff is also an absolute necosity, otherwise the lessons taught in this expensive manner may be thrown away. Yet all this must be regarded as a part of the esiabli,hment charges of an ordnance manu-
other running down to the great docks on the west Everything required for testing at the Polygon has therefore to be taken on trucks from the ordnance works to a junction, and there switched on to the service line that terminates in the firing ground As the weights to be carried often exceed 60 tons, special trucks are required for the purpose of transporting them. The Polygon occupies a long strip of coast land considerably above the level of the sea, the edge of it looking down on the broad foreshore of the estuary, which is always uncovered except during periods of exceptionally high tides. Sometimes it happens-once in a century it is said-that a combination of tide and wind submerges the land alung the coast to a depth of several feet. Such a tide occurred about four months since, when the whole of the firing ground and its equipment was submerged for 4 ft . or 5 ft ., causing disaster to the powder stores, measuring instruments, and everything else that could sustain damage. The special advantage of the site selected, and known as the Pointe du Hoc, is that it possesses the four classes of range necessary for ordnance experiments, all four being available from the same row of firing platforms. Immediately opposite the middle of these platforms, and at a sufficient distance from them, is a double covered way pro tected by ample earthworks, and filled with sand for a length of 50 or 60 yards; this covered way serves to receive projectiles fired into it across the screens connected with the chronographs. From the same platforms, guns can be trained to fire whiss the estuary when target practice is required hile by directing them to the south-west, long range firing out to sea is available. Fig 201 (see page 616), gives a very good general idea of the firing grounds. On the right hand are shown the covered
ways and protecting earthworks, and immediately opposite them towards the left, are the firing platforms. The railway from the works runs parallel to the northern limit of the Polygon, and terminates heside a long traversing pit at ight angles to the railway and parallel to the line of platforms. In this traversing pit, which is long
enough to extend beyond the last platform, rails are laid to receive the numerous wheels of a heavy traverser, to the platform of which, rails are bolted; the level of the traverser corresponds to that of the ground. At this level and on both sides of each platform, other rails are laid, in such a way as to form an extension of the lines on the traverser; at the end nearest the railway an additional pair of rails is laid. These arrangements are necessary for moving heavy weights from the railway to any one of the firing platforms. For this purpose a travelling crane capable of handling 80 -ton loads is provided; it is illustrated in Fig. 194 (page 612), where it will be seen to consist of a strongly framed derrick mounted on four wheels and carrying on the top a platform and winch. When a truck loaded with a gun has been brought down from the factory (see Fig. 202, page 616) it is run under the crane and raised; the truck is then removed and the loaded crane is placed on the traverser and hauled along to any of the platforns that may be desired. It is then shifted off the traverser over the platform, and the gun is lowered on to the carriage previously prepared for it. An extension of the rails laid in the traverser pit is made to the edge of the coast where an isolated firing platform is fixed; this is used for testing guns at various angles, the elevation of the shore bove the sea being sufficient to give the necessary amount of depression. Fig. 202 gives a very good idea of the range of firing platforms, with the protecting bank behind, a locomotive and gun ruck on the left-hand side, the traverser and travelling crane, and the traversing pit in front of the row of firing platforms.
These platforms call for some description ; they are very simple and efficient, and are admirably arranged for their purpose. On a rigid foundation of concrete and piles, is secured a large circular bedplate of cast iron, in the face of which are a number of slots converging to the centre. All the bedplates-one for each platform-are identical in form and dimensions; they are of course made very strong and heavy to withstand the strains to which they are subjected. The carriages, whether they serve as supports to guns under tests, or are themselves being tested, are secured to the bedplates by bolts that can be moved in the slots, passing through holes in the bedplates of the carriages and secured above by nuts. To complete the system the holes in al types of carriages, which serve ultimately to receive the holding-down bolts on boardship or in forts, are drilled in such positions that when a carriage is placed on a platform the bolt holes coincide with the slots ; there is, therefore, no difficulty in making the connection rapidly and securely.

Every precaution is taken to prevent accident to those engaged on the firing ground; immediately at the back of the range of platforms is a long and high embankment, access to the top of which is gained by a stairway at one end, where an observing station is established provided with instruments for noting results obtained with long range firing (see Fig. 201). At each end of this earthwork is formed a proof chamber entirely screened from the firing platform. A simple and ingenious device has been adopted for observing the general effects of the rounds fired when the guns are directed against the sand-filled covered way ; a large mirror mounted on trestles, so as to be portable, is placed opposite the entrance o either proof chamber, and by giving it the necessary angular adjustment, all that takes place at any of the platforms can be minutely observed. Fig. 195, page 613 ,shows this arrangement clearly. On the caution signal being given that a round will be fired every one on the ground retires, either to the chamber or behind the embankment, and it is only after a second signal that the lanyard is pulled, or the electrical connection completed by the firing number, whose place also is behind the embank ment. By a strict observance of these precautions and by military discipline everywhere, the test that are constantly being carried on at Hoc have been unattended by any accident. In a light been unattended by any accident. In a light shed at the back of the embankment is a
powder store containing only a limited supply of explosives for the day's requirements, the main store being in a suitable magazine. It is in this shed that cartridges are made up of such weights and proportions as are called for by the special ex periments being made; the smokeless or semismokeless powders now chiefly used, are practically free from danger of premature explosion, unless,
indeed, they were incited thereto by the uninten- experiment. As the cartridges are completed they left-hand side of Fig. 201); the instruments comprise tional discharge of the black powder, of which a are filled into light iron cases of different types, Le Boulenge chronographs and the Peigne telecertain quantity is at hand for making primers for according to varying calibres. Figs. 197 to 200, page meters, to which we shall refer in a subsequent the cartridges. $\quad 614$, illustrate their construction; from these views it article. These instruments are of course suffiIn another part of the Polygon is a large quad- will be seen that they are made of sheet copper,
In another part of the Pore rangle inclosed by heavy earthworks, from the rectangular in section with rounded corners, and uninfluenced by any shock or vibration. Besides inner slope of which project banks of similar finished at the top and bottom with flanged joints. these rooms is the dwelling-house for the men emsections cutting up a part of the space into a series In the top of each case is a circular opening stiffened ployed at the Polygon; various signalling towers of recesses, but leaving a large central space clear. with a brass ring over which a second ring is and ranging stations complete this very important In each of these recesses is a light wooden and iron screwed ; the top of the inner ring forms a seat for installation.
shed, and a tramway runs around the quadrangle the brass cover to this opening which is hinged as . The relations of the Forges et Chantiers Comconnecting all the sheds together and terminating shown and secured by a bayonet joint that is pany with the French Government are such that a in a magazine. This is the place where cartridges operated by turning a lever attached to the centre company of artillery privates with their officers of various calibres are made up for store; the of the cover to and fro. Figs. 197 and 198 are re- remain constantly at the Polygon under the

Fig. 194. Eighty-ton travelling crane and traverser at firing platforms; the hoc polygon.
arrangement will be understood by reference to spectively a section and plan of a case to hold four control of the company, the same men remainFig. 196. The work, which is more or less dangerous, half cartridges for a 27 -cent. gun, and Figs. 199 and ing for a term of years before being exchanged. is thus carried on by a man isolated in each recess, 200 are corresponding views for one containing six All the manipulations connected with the testand if an explosion did occur the lightness of the cartridges for a 15 -cent. gun. Handles for moving ing of guns and carriages are carried out pre-

TABLE X.-DETAILS OF FIRING TESTS WITH A CANET 15.CENT. NAVAL GUN, 36 CALIBRES.

Fuzes: Obturating fuze, naval model. Obturation: Good. Breech manipulation: Quite easy. Angle of fire : 0 deg.
shed and the heavy banks on each side of it would, these cases are attached to the sides as shown in the cisely under the same conditions as at a State it is hoped, direct the explosion upwards without diagrams. factory, and all observations and records are taken affecting the adjoining sheds; this theory has not Beyond the various protective earthworks are by the officers in charge, and by the inspectors up to the present been confirmed or refuted by situated rooms for the ballistic observers (see the employed by the purchasers of inatériel, prior to
acceptance. All reports are framed upon a series | the schedules employed by the company; Nos. IX. 'these strips are bound loosely into fagots which fit of type schedules, and are filled up so that corre- and X. refer to some very interesting tests recently easily into the powder chamber, and are packed one sponding tests can be immediately compared. made with a 15 -cent. naval gun on a forward pivot- on top of another in a canvas bag, the length of Thus, excepting for their own private information, ting carriage that will form part of the armament which, of course, varies with the weight of charge. the directors of the gun factory take no part in of the new Greek ironclad recently completed at In the open air this explosive burns, but without preparing any of the reports which are in every Havre. The explosive used was one of the new semi- much intensity, and it cannot be fired without a case of an official character; by this arrangement smokeless powders, the base of which consists of comparatively heavy priming charge of gunpowder;

Fig. 195. Arrangement of mirror at the hoc polygon for viewing firing tests from proof chamber.

Fig. 196. Protected inclosure for charging cartridges at the hoc polygon.
they are entirely cleared from any suggestion that dissolved gun-cotton mixed with nitrates to check the an ordinary percussion fuze is then sufficient to pro-
might be made of regarding results in too favourable a light, and can accept with more confidence the records obtained than if they were made by their own employés.

We reproduce in the accompanying Tables some of is cut into strips about 8 in. long and f in. thick
an ordinary percussion fuze is then sufficient to pro-
duce ignition. The small quantity of smoke produced duce ignition. The small quantity of smoke produced
with this explosive possesses but little density, and lasts but for a very short time, falling to the ground, and quickly clearing away. Of its energy the annexed Tables give a sufficient proof; we think

Present MM.
Table XI.-Comparative Results with Armstrong and Canet Brecehloading Guns.

	1. Arm. strong.	2. Canet.	3. Canet quick.
Bore Weight of puan	${ }^{6}$	6.9	5.9
Length of bore $\quad \because \quad \because \quad \because \quad .$.	110	114	100
Weight of projectiles $\quad .$.	100	34 94.798	88.898
Nature of powder $\quad . . \quad$.. $\quad .$.	38	${ }_{30.86}$	${ }_{83.069}^{8.822}$
Nature of powder	smoke	smoke-	smoke-
Initial velocity ft.	2310	lens	${ }_{2749}$
Total energy .. $\quad . \quad \therefore$ foot-tons	3797	4215	4656
Foot-tons energy per ton of gun.. ...	628.8	751.3	951.6
Strain on gun" ${ }^{\prime \prime}$ pound of powder.. ${ }^{\text {tons per sq. in. }}$	${ }_{17.5}^{97}$	138.8	140.8
Strain on gun $\quad . \quad$ tons per sq. in.	16.5	16.5	18.4

we are correct in saying that nosuch results have ever before been obtained with a gun of the same calibre and length of bore (36 cal .). For the sake of comparison we give in Tables XI. and XII. therecordsof one round from an Armstrong quick-firing 6 -in. gun of 40 calibres made a few months since, with smokeless powder, and in a third column are given the corresponding figures from a quick-firing Canet gun of 15 cent. (40 cal .) made in March last with French semi-smokeless powder. It will be noticed in Table XII. that while the foot-tons of energy de-
veloped in the Elswick gun were 3797 , the energy 5136 foot-tons, equivalent to 1027.2 tons per to of the Canet gun was 4215 foot-tons, while the weight of gun. And this without any undue corresponding figures for the 15-cent. quick-firing fatigue of the steel. It will also be noticed in $^{\text {fig }}$ gun are even more remarkable. During its latest $\left\lvert\, \begin{aligned} & \text { fatigue of the steel. It will also be noticed, in } \\ & \text { columns } 1 \text { and } 2 \text {, that the measured strain in }\end{aligned}\right.$ gun are even more remarkable. During its latest
trials, made a few days ago, this gun surpassed all
the 15 -cent. naval guns was alike in each in 1 and 2 , that the meased trials, made a few days ago, this gun surpassed al the 10 -cent. naval guns was alike in each case,
its previous records. With a charge of stronger but it is evident that in the Canet $15 . c a n t$ explosive, a velocity of no less than 9887 ft . per this strain must have been sustained farther along second was obtained, developing a total energy of the chase. Quite apart from any question of rela.

Fig. 799.

Figs. 197 to 200. Drtails of boxes for storing loadrd cartridaes.

Table XIII.-Method of Tabulating Tests of Carriages.

Table XIV.-Particulars of Rounds Fired for Testing

				\%		-	宫
1	lb.	A 28/34		${ }_{\text {in }}^{\text {in. }}$	Projectile	fred into sand	$\begin{array}{r} \text { dear. } \\ \text { angle } 0 \end{array}$
2	374 374	A 28834	92.4	44.28	"	"	$\cdots{ }^{\circ}$
4	374	${ }^{\text {P }}$ P 818	${ }_{92.4}^{118.6}$	45.07 43.50	",		", 20
5	974	P B 2	116.6	44.28	".	$\because \%$	"20

tive merit in the guns themselves, these Tables are of the highest possible interest as indicating a rapid development in the manufacture of explosives, and suggest the necessity of consequent modifications in the design of ordnance to meet the grester uniformity in the strains set up along the gun. It is for this reason that the approaching trial of the first 66-ton Japanese gun will be of especial importance to artillerists.

At the Hoc firing grounds three crusher gauges are employed at each round ; two screwed into the mushroom head of the obturator, one near the bottom, and one near the top of the bore, while the third is left loose in the chamber. In addition to these gauges the gun is connected with a Sébert velocimeter to record the characteristics of recoil, and incidentally the velocity of the projectile ; the latter value is, however, obtained direct with Le Boulengé chronographs.

Tables XIII. and XIV. show the form adopted hy the Forges et Chantiers Company for recording the tests of gun carriages. The mounting to which these Tables specially refer, was one of a large these Tables specially refer, was one of a large
number of cast-iron coast defence carriages for number of cast-iron coast defence carriages for
24 -cent. guns made for the French Govern-$24-c e n t$. guns made for the French Govern-
ment. The regulation trial consists of firing three rounds with varying charges into the sand-filled covered way, and two rounds out to sea at a maximum elevation. The guns for trials of this nature are supplied by the War Department, just as for testing naval carriages, such as those for the Marceau, they are furnished by the Marine.

THE IRON AND STEEL INSTITUTE.

 (Concluded from page 585.)In our last issue we brought our notice of the recent meeting of this Institution up to the end of the first day, and we now proceed to deal with the rest of the proceedings.

Aluminium in Strbl.

The first paper taken on Thursday, the 8th inst., was that of Mr. W. J. Keep, of Detroit, Michigan, the title being "Aluminium in Carburetted Iron." This paper we shall shortly print in full, and we may therefore at once turn to the discussion.
Mr. James Riley was the first speaker. He pointed out that nothing had excited more interest of late than the use of aluminium in the manufacture of steel. He had been pressed to use it, and its virtues had been much extolled, but he had not formed so high an opinion of its merits as many of his friends appeared to do; at any rate, he thought the advantages gained were too dearly purchased at a cost of from $1 l$. to $2 l$. per ton on the steel produced. Aluminium was, however, becoming cheaper, and if the cost were sufficiently reduced, its use would be a matter for consideration. He would say that the purpose for which he had used aluminium was to endeavour to lower the melting point of the steel, so that in making the melting point of the steel, so that in making complicated castings there should not be this same rally depended upon the temperature to which the metal had to be brought to produce fluidity. Aluminium certainly did have this effect to a remarkable degree. An alloy was made of 20 per cent. of aluminium of second quality, and 80 per cent. of steel, and which gave 18.3 per cent. of aluminium on analysis. The specific gravity was 6.23 , although the mean specific gravity of the two substances would be 6.89. This alloy was very fluid when in the crucible, but it set with extreme rapidity, so much so that only half the contents of the pot could be poured out. This of course was an extreme case, but in some of the steels containing large percentages of aluminium the same effect was observed. With 23 to 4 per cent. of aluminium, it was noticeable. An addition of 8 per cent. of aluminium made the alloy so short and crystalline that it was useless for work. As to the effects on the casting, he did not
find them very great. The tensile strength was slightly increased; not very much, in fact they often found the superiority of one cast of ordinary steel over another as great as that of a sample of aluminium steel over ordinary steel. It might be two or three tons to the square inch. The elastic limit
was considerably raised, and there was an addition was considerably raised, and there was an addition
to ductility. With one per cent. of aluminium to ductility. With one per cent. of aluminium
these results would all be found. These advantages were, however, more apparent in the
testing room than in actual use. The increase of testing room than in actual use. The increase of
fluidity was, after all, the great advantage given by the use of aluminium. One of the great sources of cost of steel castings was the amount of scrap that was necessary owing to the large heads of the steel, the moulds were filled with sound metal, heads and gates could be reduced perhaps 75 per cent.; or even if they could be brought down 50 per cent. it might pay to spend a
certain amount on aluminium. So far as his own experience went, however, and he had
made hundreds of tests, he had ceased to use aluminium more than a year before, because he did not find any economy in its application ; in fact the advantages gained in the manner indicated were not sufficient to lequal the cost of the aluminium at that time. Lately, however, the merits of aluminium had again been brought forward, and he had been much pressed to use it. He was told of important results obtained by people, although he never met the people themselves. However, the advantages claimed were so great that he had been induced to have another set of experiments made upon a number of tests including a wide range of percentages of aluminium. At the present time, howevor, his mind was pretty well made up that there would be no commercial advantage in the use
of aluminium in steel except perhaps for making thin castings.
Mr. Spencer, of Newburn, said that he could indorse nost of what had fallen from Mr. Riley; in fact he (Mr. Riley) had said very much what the speaker would have said himself, with regard to the use of aluminium in steelmaking. He would only add that in the use of this alloy much depended upon the application, and he found that it would not do for all grades of carbon. With higher percentages of the latter aluminium was less advisable to use, for with higher grades the results would not come up to the anticipations many people formed. In castings there was considerable advantage from causes which Mr. Riley had pointed out, and no doubt it would be useful in the production of intricate castings.

Mr. J. Riley said he had intended to speak upon an important point. It was that in big charges of metal, from 10 to 15 tons, the effect of the aluminium might be dissipated before the end of the charge was reached when making castings. The experiments hitherto made, upon which opinions had been formed, were chiefly upon small quantities of metal in crucibles, and the results in such cases were often very different to those which would be obtained when trying the same thing on a larger scale. In this respect it differed from silico-spiegel, the effect of which will last to the end. The use of aluminium in the effect it had on the production of other alloys was also of great interest. For instance, if copper and iron were melted together, and the resultant mass were examined under a microscope, it would be found that the copper was simply distributed throughout the mass, and the two were not really alloyed; but if aluminium were introduced the alloy was found to be perfect. In the case of nickel steel this property of aluminium had been found of value, the introduction of the latter at the end of the charge having the effect of producing a very perfect alloy.
Sir Lowthian Bell wished to indorse Mr. Riley's last remark. One of the chief uses for aluminium was for the manufacture of aluminium bronze. In making that alloy the temperature of the melted copper was increased when the aluminium was introduced, thus showing that chemical union was taking place between the two.
Mr. A. Allen was of opinion that often there were traces of aluminium in iron and steel without the fact being recognised. The chemists engaged in works naturally cut their work as short as possible, and professional chemists were given instructions what to test for when a sample of iron or steel was sent to them. The result was that tests were only made for the commoner or more important elements, and aluminium might often be present without there being any knowledge of its presence. Faraday said he had found aluminium in steel, but Dr. Percy had thrown cold water on this and intimated that it was an analytical error and had said at any rate it could not have been English steel. Many persons had been misled by this authoritative expression of opinion. Thespeaker thought that the number of samplesof pig iron which had been analysed and which had been proved not to contain aluminium was exceedingly small. It was not easy to estimate aluminium but there was one goor published method. He had known a case in which one chemist declared there was 2 per cent. of aluminium in a sample of steel whilst another analyst had said there was none at all. It was not certain that aluminium remained although the metal had been through treatment intended to introduce it, and he would point out, with regard to what Mr. James Riley had said, that though aluminium might be put into the pot it was by no
means certain it would be found in the steel. It would be interesting if Mr. Riley would have
analyses made of the various samples of steel he had made so as to find if it really remained. With regard to aluminium bronze it would be of interest to the meeting to hear that at Newcastle they were using copper to recover aluminium from the slag, and this was found quite successful.
Dr. E. Riley said that he could hardly agree with what had been previously stated with regard to aluminium in pig iron. He had had samples of iron and copper sent to him for analysis specially with regard to aluminium, and he had failed to find it. This had caused some people to express a good deal of surprise and annoyance, as the metal had been treated to contain aluminium. A young chemist had found 2 per cent. of the alloy in one of these samples in which Dr. Riley had failed to identify it ; but on inquiry the speaker discovered that the reputed aluminium was no doubt really silicon which had been taken from the veasels used in making the tests. It was difficult to say positively when aluminium was present if only in amal quantities, and he was quite satisfied that aluminium might often be put into iron to produce cer tain results, but when the iron came to be tested the aluminium would be found to have disappeared. He would like to ask Mr. James Riley whether aluminium had an effect in taking the oxygen out of iron. In that case it would account for the fact.
Mr. Stead, of Middlesbrough, said that for some time past he had given a good deal of attention to the subject of the effect of aluminium in steel and a means of analysis to discover its presence in that metal. It was the latter point that would more particularly occupy his attention. He had never failed to find a trace when it had boen added to steel, although some of it might have disappeared. He agreed with Dr. Riley that it might be re moved from steel by oxidisation, for he had made experiments to that effect. In this way aluminium would be removed from steel subject to an oxidising influence. If carbonic oxide were blown through a charge of steel it would remove all the aluminium present except indications in the form of alumina, caused by the action of the oxygen on the aluminium. The speaker next described a method of testing for aluminium which he had set forth in a paper read before the Society of Chemical Industry ; and he pointed out how in this method the errors likely to arise in testing by the crude plans often followed might be escaped. Mr. Stead urged that when steel manufacturers sent samples to analysts they should say for just what elements they wished tests to be made. A complete analysis of steel would occupy about a fortnight, for it was really a very complicated piece of work to undertake. He had on one occasion been blamed for returning an analysis of a steel in which he had not shown aluminium. He had, however, had no instructions with regard to this alloy, and he had followed the usual course, testing only for the more ordinary constituents. It was a curious thing that when steel and aluminium were mixed that an increase in volume took place. For this he could offer no explanation, but he gave instances, showing that the fact existed
Mr. Hadfield referred to the debt of gratitude the members owed to Mr. Keep for putting the results of his researches before the Institute. For a long time past it had been stated that aluminium lowered the melting point of iron. This the speaker did not consider to offer a sufficient explanation of the fact that the fluidity of iron and steel was increased by aluminium. He would attribute the latter phenomenon to one or two causes; firstly, by the expansion of the aluminium itself; or, secondly, that when aluminium was oxidised to alumina it produced a very fusible slag. The latter, the speaker thought, the more probable cause. Mr. Galbraith in his paper on "Certain Chemical Phenomena in the Manufacture of Steel " gave what the speaker considered the real explanation of the part played by aluminium, although he was not referring to the latter. He said that "a metal charged with oxide of iron, no matter what amount of hat you put into it, will run cold owing to the infusibility of the oxide." In melting iron and steel there was, as a rule, some oxide present, and it would therefore seem probable that aluminium acted beneficially by reducing this infusible slag and cleansing the molten bath. The point of fusion was not reduced, as Mr. Hadfield could prove, owing to the assistance of M. Osmond. He sent the latter a carbonless iron alloy containing 5 per cent. of aluminium. This alloy had been heated
to 1475 deg. Cent., as tested by the Le Chatelier
long, to be used for heel, centre, and mitre-posts. of which, of new and very ingenious types, designed These would be about 12 in . by 16 in . in section, or by Colonel Peigne, are installed on the firing say 62 cubic feet, which would be about 18 tons grounds. Finally, for testing the behaviour of gunwhen dressed. There are other timbers perhaps heavier than this, but not so long. The difficulty of getting together long massive logs of greenheart such as we have described is very great.
The mitre-posts are also bolted together with diagonal bolts. The beams are tenoned into heel and panel-posts, the latter obviating very long beams, and, indeed, it would be impossible to get sufficiently large timleer for these very big gates, excepting by the method described. The heel-posts are 13 in. radius. The heel-post, caps, and plates are of steel ; the pivot plates are of steel and the pivots are of steel also. There is a horizontal strap steel collars to the panel-posts top and bottom
(To be continued.)

MODERN FRENOH ARTILLERY.
 No. XXI.

The Firing Grounds of the Forges et Chan-
tiers Company at Havre-concluded.
tiers Company at Havre-concluded. in any desired position by set screws; in operat-
In describing the arrangements of the Hoc Polygon ing the instrument one bracket is always set we referred to the various instruments employed higher than the other. The brackets carry, each an
carriages under fire, the various phenomena attending their recoil, bringing back the gun to firing position, \&c., and incidentally, for the measurement of the velocity of the projectile by that of the recoil of the gun, the velocimeter of Général Sébert is always employed. To give a detailed description of these various installations would require more space than we have at our disposal, but we propose to convey in as few words as possible some idea of the principles on which they are based, and the mode in which the instruments are employed. The construction and the mode of working of the Boulengé chronograph are almost too well known to require special reference; a short general notice of it will therefore suffice in this place. The frame of the instrument consists of a long brass column Figs. 204 and 205, attached to a triangular foot which is provided with adjusting screws $b b$ for levelling the base, so that the standard can be set absolutely vertical. On each side of the standard are sliding brackets that can be fixed
the resistance they offer to gravity ; two independent circuits are therefore employed with a proportional numbers of cells. Suitable arrangements are made for cutting off the current from both magnets either simultaneously or at an interval, with the result that the bars drop either together or one after the other. The function of the shorter bar F is simply to start mechanism by which a record can be cut on the surface of the longer bar C. The distance of the mark thus made longer bar C. The distance of the mark thus made on the latter, measured from a datum point also
engraved on it, indicates the time occupied by the bar in falling through that distance. To avoid calculation, tables of equivalents are supplied to the observer, by which the whole range of distances, in inches and thousandths of an inch, are reduced to the corresponding velocities of a projectile in feet per second. The distances marked on the har C eet per by a re measur braduated acale on which the datum points are marked. The bar on which these
records are made is sheathed with a thin tube of zinc D which receives them, and which may be renewed as often as desirable. The mechanism by which the marks are engraved is of a very simple character. Immediately below the shorter bar F is a tube L to receive it as it falls, and beneath this tube, but clear of it, is a small disc connected by means

diagrams showing construction of the le boulenge chronograph.
for measuring the results obtained, and the phenomena developed, when testing guns and carriages. For the former, the principal data required refer to velocities of projectiles from which striking energies, power of penetration, energy of shot per ton of gun, per pound of explosive, \&c., are deduced. To obtain this information two Le Boulenge chronographs with screens are employed. The results of elevation, together with the various deviations, and elevation, togeth, are obtained by means of telemeters, several
ectro-magnet A B, with electrical connections to of a central stem to a lever pivotted to a bracket suitable batteries, the current from which is so on the frame of the instrument. The detail of this adjusted by means of resistances, as just to support part of the chronograph is given in Figs. 206 and an iron bar. The proper working of this part 207. In these figures, the disc is shown at 0 , and of the instrument is checked by adding small the lever beneath it at I. The end of this lever sliding brass weights to the bars, the necessary opposite the disc is provided with a catch that holds strength of current being such as to support the a detent which arrests the action of a spring that bars, while it is insufficient to carry the weights drives a small revolving disc G with a cutting edge. in addition. The bars thus held by the two. When the bar falls on the table its weight strikes magnets are of different lengths and weights, the up the catch and liberates the apring, causing the strength of the currents being proportioned to knife to revolve. The longer bar when released
falls through guides until it is arrested by the table.

In the circuit by which the longer bar is sustained is included a number of fine copper wires, passed across a large wooden frame, which is placed in front of the gun, and at a safe distance from it. Similar wires on a second frame at some distance Similar wires on a second frame at some distance
from the first are connected with the circuit befrom the first are connected with the circuit be-
longing to the battery of the shorter bar ; these frames constitute the screens through which the projectile has to pass. The wires from both batteries are coupled to a circuit breaker, so arranged that the current can be cut off from each circuit simul taneously. This instrument (Figs. 206 and 207) consists of a small insulated base, on which is secured a bent plate spring t, carrying at its free end a cross a bent plate spring t, carrying at its free end a cross
strip of insulating material u. On each side of this spring are two steel plates $q q^{1}$, in connection at one end with two of the binding screws; the two other binding screws have metal pins $r r$ connected to them, which are immediately beneath the steel plate just alluded to. By depressing the central spring the plates are depressed, and the two circuits are completed, and they can be held in this usition by a latch x, which retuing the end of th ppring. By releasing this latch, however, the spring flies up, taking with it the steel plates, and breaking both circuits simultaneously. This device is rendered necessary for accurate readings of the chronograph. If both the bars be released simultancously by operating the circuit breaker, the distance through which the longer bar will fall before the shorter one has struck the disc and put the marking knife in operation, is a definite amount, occupying a fixed period, and this having been accurately determined, must be allowed for in measuring the distances afterwards recorded on the zinc casing of the bar. The height of fall of the shorter bar can be regulated within certain limits by adjusting the disc on which it drops, but the distance is usually a fixed one for all experiments. Upon the graduated rule with which the distances marked on the bar are measured, a zero ine and a line corresponding with that produced by the circuit breaker, when the instrument is adjusted normally, are engraved, and it is necessary, before commencing a series of experiments, to ascertain whether the marking produced by the chronograph, when both bars are released simultaneously, corresponds with that on the graduated ule.
When the gun is fired, the projectile, which is generally flat-headed, to insure fracture of one of the copper wires on the screens, passes through the first and afterwards through the second screen. When the wires in the first series are broken, the circuit of the longer bar is interrupted, and the bar falls. When the second screen is passed the other circuit is broken, the shorter loar falls, starting the knife, which makes a mark on the longer bar, the position of which depends on the length of time the projectile has taken in passing from one screen to the other. This mark is read off on the graduated scale, and the reading is referred to a table of velocities, so that the result can be obtained at a glance. The following example of the mode of calculating velocities by this instrument is taken from the Ofticial Treatise on the Manufacture of Ordnance: "Let the height $h=8.573 \mathrm{in}$., through which the chronometer (the longer bar) has fallen, measured from the origin or zero. Then, since $h=\frac{1}{2} g^{2}$,

$$
t=\sqrt{\frac{2 h}{12 \times g}}=\sqrt{\frac{8.573}{6 \times g}}=.2107 \text { of a second. }
$$

Deduct . 15 of a second for the instrument (the time allowed for the operation of the shorter bar), and .0607 is the time taken by the shot in passing over the space between the two screens. It follows then from the ratio $\stackrel{\text { space }}{\text { time }}$, which is the common expression for rate of motion, that the velocity $=$ $\frac{120}{}=1977$ foot-seconds." It should be men.0607
tioned that 120 ft . is the standard distance in English official trials between the two screens. Fig. 203 shows the general arrangement of a chronograph installation.
In order to utilise to the fullest extent the costly experiments of firing at long ranges, instruments of the greatest available accuracy are necessary, and of these the telemeter is the most important ; its function is to determine the length of range obtained with precision, and to enable comparisons to be made between the different rounds fired, At the

Polygon of Hoc in all trials of this nature, the guns of about 245 metres. If \mathbf{P} is an imaginary point under test are fired out to sea, the column of water 10,000 metres distant, the triangle to be solved is (Fig. 211) created by the falling projectile being high PLS, which becomes CLS for any point C at enough, and of sufficiently long duration, as a rule, which the projectile falls. The two observing to enable the observer to bring it within the range of stations L and S must therefore be supplied with a field glass before its subsidence. The chief con- theodolites, by means of which the value of CS can dition involved is the reading of ranges up to be deduced. Now in order to differentiate the

DIAGRAM SHOWING CHRONOGRAPH CONNECTIONS.

Fig. 210. The de peigne telemeter.
10,000 metres with a maximum error of 50 metres, point P from a point, 50 metres, more or less, from and the telemeter that has been designed, and is in it, it is necessary that the horizontal circle of each constant use for this purpose, differs sufficiently theodolite should give accurate readings up to one from instruments of the same class generally em- fiftieth of a millimetre, on a limb of 40 metre ployed, to call for a somewhat detailed description. The line of fire at the Hoc Polygon (see Fig. 212) is directed towards the south-west, and ranges at the rear with the belfry of Orcher. Two buildings adjacent to the firing platform, an old lazaret L and a aemaphore S (Fig, 213), about $27 \overline{5}$ metres apart, conatitute an oblique base in relation to the line of fire, and Its extension In M furnishef a useful base
radius. The impossibility of taking such minute readings with accuracy, even supposing that the vernier could be correctly graduated, led the inventor of the instrument in use at Hoc to construct theodolites without a limb or vernier, but which, nevertheless, afford means of obtaining which, nevertheless, afford means of obtaings of very great precision. The designer of this ingenious telemeter is a well-known artillery
officer, Colonel Peigne. The problem appears a be mentioned that the scale of the divisions metres. From this triangle LSP has been obtained somewhat paradoxical one, but its solution is shown on the diagram is the actual size as seen with absolute correctness, the value of the angle extremely simple and logical.
through the microscope of the instrument. Both PLH equal to S which serves as the base for regu-
A marine telescope (Fig. 214) is mounted on a the observing stations are provided with instru- lating the telescope L. For adjusting the mirrors tripod with locking screws, and with a non- ments of the kind just indicated, and they are in the observing station, two permanent points were graduated circle, but with an adjusting screw V ; it regulated in such a manner that when their direct fixed by theodolite, on the coast between St. carries in front of the objective a small mirror M (see optical axis is turned to coincide with that in which Addresse and Harfleur; these gave the angle β Figs. 214 and 215) mounted on an axis that is con- the point P falls 10,000 metres distant along the from the station L. Two other points were also

Fig. 214.
the de peigne telemeters.
trolled by the rod T by means of the micrometric line of fire, this same axis passes, by reflection, fixed giving the angle a from the station S. In screw A, the head of which is accurately graduated. Direct or lateral rays can be thrown upon the mirror at will by turning the shield O, Fig. 215. The micrometer consists of a plate divided into 240 equal part (see Fig. 216) in such a way that readings up to part twelve-hundredth part of its diameter can be one twelve-hundredth part of its diameter can be
taken ; thus in Fig. 216 it will be seen that the taken; thus in Fig. 216 it will be seen that the

column of water thrown up by the falling pro| | |
| :--- | :--- |
| 8 | deg., and from this the triangle $L S P$ is deduced on the head of the screw Y is then noted. This | jectile stands opposite the division 1072. It should terminating at the point P at a distance of 10,000 being done each observer looks for the column of

water through the telescope, and stops the circle of the tripod, by means of the screw V as soon as he has obtained the desired result and has taken the reading- 1072 for example. The point of fall being C it is necessary to measure the angle $C L P$ and CSP from which the triangle CLS can be solved. If, without shifting the telescopes, an observation by reflection is made, it will be noted that the Chateau of Honfleur is no longer in the optical axis, but that the division- 1072 for example -takes the direction $S C^{\prime}$ or $L C^{*}$. The angles $C L P, C^{\prime \prime} L H$ are in fact equal, and so are the angles CSP and $C^{\prime} S H$. This being done by turning the micrometric screw A of the mirror, the Chateau H is brought over the division 1072, given by the column of water, The reading then taken on the graduated head of the screw gives the angle CLP or CSP with very great accuracy because the rod T (see Fig. 214) is of considerable length; a spring R presses constantly against the end of the micrometric screw A to prevent loss of movement, and the head of the screw is sufficiently subdivided to give the necessary accuracy of reading. The angles C L P and C S P being known, the variations in range and direction can be obtained graphically. In a proof shelter close to the firing platform is mounted upon cast-iron standards a long gra duated bar, Fig. 217. This bar represents the line of fire to a convenient scale ; at one of its ends is marked the oblique base $L \mathbf{S}$ with its two observing stations; at theother end aretwoarcs of circlesstruck from L and S as centres and graduated to correspond with the divisions on the micrometric screw of the telescopes. Each of the actual stations is connected with the shelter in which this model is placed, by telephones. The person operating the graduated bar, fixes on each of the two arcs, at the divisions indicated by the signals given through the telephones, two wires attached at one end to the points L and S. Their intersection gives the triangle CLS, which it was desired to solve, and a slide, to which is attached a transverse scale, is pushed along the graduated bar, as far as the point C; the range and the amount of deviation can then be at once read off by the observer. It has been proved by repeated trial that the maximum error in this method does not exceed 40 metres in a range of 10,000 metres. The observer has ample time to solve the triangle and to enter the result before the gun can be loaded for the next round. It will be seen from the foregoing description that Colonel Peigné has succeeded in solving a difficult problem in an extremely efficient and simple manner, and without the use of instruments that require very fine readings and are liable to error in their adjustment
The same inventor has designed for the Polygon of the Forges et Chantiers Company two instantaneous telemeters by which a moving target can be followed, and will indicate if any vessel that may be passing is in dangerous proximity to the line of fire. The first of these instruments is mounted on a tripod; it has a base 1.75 metres long, and by means of reflecting prisms the observer can use it like an ordinary telescope. The two objectives are placed at each end of the base, and the rays are reflected by a mirror set at an angle of 45 deg. ; Figs. 218 and 219 indicate the general arrangement. The apparatus is adjusted on a stand as illustrated. The manner in which it is used is very simple ; each eye-piece is provided with a finely-divided micrometer screw (see Fig. 219). The instrument is moved until the vessel to be The instrument is moved until the vessel to is brought into the field on the left-hand observed is brought into the field on the left-hand
side, then, by means of a small lever, the observer moves a deviating prism along to the points $\mathbf{P}, \mathrm{P}^{1}$ or $P^{\mathbf{z}}$, until the vessel in the field appears to be seen in the right-hand objective. This movement at the same time shifts an indicator along the graduated bar carried on the straight part of the tube of the instrument, and its position when the observation has been completed indicates the distance of the vessel; the error in the readings made with this telemeter does not exceed 100 metres in 4 kilometres. Fig. 210 is an engraving of the complete instrument. The second instrument (see Fig. 220) is mounted on a foundation of masonry ; it has only one eye-piece, and readings can be taken with a maximum error of 100 metres in 6 kilometres. It consists of a tube $m, 2$ metres in length fitted with a mirror at each end and a telescope on the side at L, fixed normal to the tube. The whole instrument turns upon a carefully adjusted horizontal ring, the tube being mounted on an axis O. The telescope being dirested on the object under observation, it receives in its focal plane $f f^{\prime}$ the direct image of the
object ; then by reflection from the mirrors M and m it also receives in the same focal plane the same image from the other extremity of the base. There are thus two adjacent images in the field which can be made to coincide by sliding within the tube, the prism P^{1} having the same angle as the prism P, but reversed. The position of P^{1} which makes the two images overlap, gives the desired distance. This apparatus is extremely simple and very easy of manipulation ; its readings, as already stated, are accompanied with a percentage of error that is almost negligible. As regards its telemetric installations, the Polygon at Hoc leaves nothing to be desired, and the instruments in use possess considerable interest on account of their originality of design.
The apparatus known as the crusher gaugeoriginally suggested, we believe, in the United States-but first practically applied in England affords a means now universally employed for ascertaining approximately the pressures set up in the bore of a gun on the explosion of the charge. In its most developed form it is as shown in Figs 221 and 222. The piston c, Fig. 221, is of steel

french crubher gauge.
and the bore, which is of carefully determined section, is subjected to the action of the powder gases, and is pressed against the small cylinder of copper a, which abuts against the plane surface of an anvil b. The copper cylinder is centred by a rubber ring, but it is left quite free to expand laterally ; a brass obturator mounted on the piston prevents the powder gases from penetrating into the interior of the crusher apparatus. As this obturator is not always quite certain in its action, it is a common practice to provide an exhaust passage to carry off any gases that may pass the obturator and enter the cylinder ; the presence of this gas would tend to make the results given by the instrument incorrect. By means of a series of preliminary trials, the reduction in the height of the copper cylinder, is determined by subjecting standard specimens to known pressures. It is of course assumed that the powder gases would produce effects similar to that of mechanical force, and the effect of the latter being known, the value of the former can be ascertained by comparison. The copper cylinders employed by the Forges et Chantiers de la Mediterranée are 8 mm . in diameter and 13 mm . in height. The selection of the metal of which they are made and the production of the cylinder is a very delicate operation, as the correctness of the results olvtained, depend of course upon the resistance to crushing being known and uniform. In order to imitate as closely as possible the action of the powder gases, the specimens subjected to mechanical pressure are acted upon as rapidly as is possible, consistent with the avoidance of shock. The crusher gauges are screwed with the greatest care and accuracy, into the mushroom head of the breech mechanism at equal distances from the centre, above and below, in a vertical plane; they thus project into the powder chamber. In quick-firing guns, however, the gauge is screwed into the base of the metalic cartridges, and commonly a crusher is left free in the chamber. Before firing, the exact height of the copper cylinder is carefully checked, and after firing the cylinder is removed and its reduced height is very accurately gauged with micrometric callipers. This height corresponds to a certain pressure, and from a series of tables pre-
pared by experiment the exact reading can be made By without any calculation.
By way of comparison we publish in Fig. 222 a section of the standard crusher gauge employed in England, the illustration referring to the type used for measuring pressures in the bore. In this figure A is the copper cylinder, B the chamber, C the piston, d the obturator, F a watch-spring that takes the place of the centring rubber ring ; G are exhaust passages, and H is the nozzle screwed into the front of the gauge. The standard size used has a piston one-sixth of a square inch in section, and the copper cylinder is half an inch long and one twelfth of an inch in cross-section. It should be mentioned that the practice of fixing these gauges to the breech mechanism has been given up in this country.
The Sébert velocimeter is an instrument of great ingenuity and value ; it is used at Havre for record ing the behaviour of gun-carriages under test, and incidentally for ascertaining the velocities of projectiles, and the amount of powder pressures. A brief description of its arrangement for measuring recoil will be sufficient for the present purpose.

english crusher anuar.

The instrument is attached to a wooden base which is secured to a fixed point adjacent to the carriage ; its function is to describe a record on a strip of thin steel that has been previously blackened with a thin film of carbon. As a matter of fact two records are made, one referring to the action of the carriage during recoil, the other to its movement when coming back to firing position. Upon the wooden base are fixed two guides in which the steel ribbon is free to slide, and these guides are so arranged that when the recoil is completed, they are shifted to one side so as to offer a fresh surface for the return record. One end of the ribbon is attached to the slide of the carriage so that wher recoil takes place it is drawn out; a similar but reverse action takes place when the slide comes back and draws the ribbon back with it. The recording part of the apparatus consists of a small carriage so mounted in fixed supports that a considerable range of angular and lateral motion can be imparted to it, and it can be held in any desired position by set screws. Un this carriage is placed a tuning-fork giving 1000 vibrations per second, and it is provided with electrical connections in such a way that the rate of vibrations can be maintained uniform for two or three minutes. A small steel point is attached to one branch of the fork and vibrates with it. A second point is held stationary on a pin in advance of the first and exactly in line with it. Under these conditions if the ribbon be drawn under the styles, a single line would be inscribed; if the tuning-fork be vibrated, and the ribbon is not moved, the vibration would be recorded by a short transverse line, the width of which would mark the amplitude of vibration. But if the ribbon be drawn under the styles, the fixed one would inscribe a straight line, whilst the vibrating one would make a series of loops to the right and left of the centre line. The form and size of the waves thus drawn indicate the velocity of the movement of the ribbon and any variation in its character. The value of the record thus produced is limited only by the pos-
sibilities of accurate reading, and as the lines inscribed are very fine, by means of a microscope and crossed hairs, a great degree of minute subdivision is practicable, and a curve can be laid down showing the movements of the carriage in functions of the time. As the return movement to battery is much less rapid, while the vibrations of the tuning-fork are maintained at their normal speed, the character of the diagram produced is quite different to that of recoil ; the transverse markings ceise to be open loops and come very close together their characteristics can, however, be read with a microscope. In Fig. 223 we reproduce one end of the diagram described on the steel ribbon, which shows distinctly the nature of the recoil, and return to battery, motions. As the lamp-black film is very delicate these records are immediately protected by a coat of varnish, after which they can be examined with safety. It is obvious that the length of the diagram corresponds with the amount of recoil. Fig. 223, which repre

elocineter diagray

sents one end of the diagram, illustrates the shift ing over of the ribbon from the recoil to the return to battery position. What we have said will giv some idea of the nature and mode of using this instrument, which cannot be fully described with out the aid of drawings ; these we may publish at some future time, together with the ingenious projectile velocimeter of Général Sébert, which i placed in the projectile and leaves its record com pleted, although the instrument itself is destroyed by the shock of the shot when it buries itself in the sand bank.

THE GREAT WESTERN RAILWAY

STEAMERS.

The Great Western Railway Company finding it lesirable to improve their cross-Channel service between Weymouth and the Channel Islands, in connection with the Paddington and Weymouth express, entrusted to Messrs. Laird Brothers, of
Birkenhead, the design and construction of the Birkenhead, the design and construction of the
required fleet of three steamers. The builders strongly required fleet of three steamers. The builders strongly recommended the adoption of twin screws, and the
results attained by these steamers fully justify their results attain
The boats were named Lynx, Antelope, and Gazelle The boats were named Lynx, Antelope, and Gazelle,
and are precisely alike, but for some reason, difficult to and are precisely alike, but for some reason, difficult to trace, the Ga
of the others.
Their dimensions are 235 ft . long between perpendi culars and 228.7 ft . long on the load water line. Th greatest beam is 27.6 ft. , depth moulded is 14 ft ., and the load draught is 11 ft . aft and 9 ft . forward. At this draught they displace 790 tons. There are bilge keels 10 in . deep, and between these and the centre ba keel two other short bilge keels are fitted. In the dead wood aft an aperture is formed similar to that in single screw vessels to allow the twin screws to revolve in area which extend beyond the midship longitudinal vertical plane.
The general arrangements are indicated in the views on our two-page plate; the interior fittings are all that can be required for elegance and comfort. There is a very complete electric light installation, consisting of a
Willans engine coupled direct to a Latimer-Clark Willans engine coupled

compound wound dynamo.

These vessels are built with seven water-tight bulk heads, thus dividing the ship into eight complete com partments, and with any two of these in communica tion with the sea, the vessel would still float. It is seldom that the principle of subdivision is carried out so far in small boats, and intending passengers may regard these boats as practically unsinkable, a point of no slight importance in these days of high speed. flat extending to bulkhead bulkhead, thus forming ballast tank, which is used for trimming the ship according to the requirements of the trade. A ballas tank is built in the after part of the forehold for simila use. The after peak can be used as a ballast tank if
necessary ; thus, no matter what cargo may be carried it is always a simple matter to keep the ship at any lesired draught.
We hope to illustrate the engines in an early issue, and therefore shall defer the description of them for the present. They are of the triple-compound type with cylinders $16 \frac{1}{2}$ in., 26 in ., and 41 in . in diamete respectively, with a stroke of 30 in .
Before the vessels were placed on their station last summer the usual official trials were made on th Mersey with the following results:

	"Lynx." "Antelope." "Gazelle.			
Number of revolu- tions per minute	121.22	122.05	120.00	
Indicated power horse-		1702	1667	1650
Meaw speed	\cdots	16.50	16,79	17.04

The contract trial speed guaranteed by the builder was 16 knots. It is an interesting fact that on the preliminary trials propellers of cast iron were used of exactly similar dimensions, but by substituting propellers of manganese bronze a gain of over half knot in speed was attained.
The work of the first season has proved that these tions.

Knots.
16.6
16.4
17.4

During all weathers.
The Gazelle may have been more fortunate in tides or weather, and has maintained the lead she had on the trials. The average speed on the station has proved in excess of the maximum trial trip speed guaranteed by the builders. The boilers have been regularly worked under a pressure of from $\frac{7}{8} \mathrm{in}$. to 1 in . water.
During the winter each boat has been round to Birkenhead to be fitted with an additional rubber in order to better suit the pier arrangements, and occasion was then taken thoroughly to examine the boilers which were found to be in perfectly satisfactory con dition and not punished from the effects of being con tantly under air pressure
These vessels are the fastest screw Channel steamer on the British coast.

ELECTRIC LIGHTING AT KESWICK. AT the concluding ordinary meeting of the session of May 20, Sir John Coode, K.C.M.G. President in the chair, the paper read was on "The Keswick Water
Power Electric Light Station," by Messrs. W. P. James Faweus and Edward W. Cowan, Assoc. MM. Inst. C.E. This was believed to be the first attempt to utilise available water power in this country for the purposes
of a public supply of electric light. Early in last year of a public supply of electric light. Early in last year ine directors of the Keswick Electric Light Company instructed the authors to prepare plans, and to procur tenders, for the erection of a central supply station in or large and sparsely populated, it was seen that the only feasible system to adopt was an overhead high-tension one The alternating current transformer system was finally selected, and a site on the River Greta, about $\frac{3}{4}$ mile rom Keswick, was chosen for the erection of the station the river being here available at 20 ft . head. The saving effected in using this water power was considerable. The rent paid for the water was 10s. per horse-power per
annum. Taking the number of horse-power hours re annum. Taking the number of horse-power hours re quired per annum as 100,000 for the present output of the power came out as 0.06 d . On turbine, the cost per horse price of steam coal 1 15s per ton, and the quantity burn per horse-power per hour as 6 lb , the cost per horse.powe hour came to 0.48 d ., or eight times the cost of the wate power. In addition to this, the attendance required for a turbine was, of course, less than that necessary for steam engine and boiler ; the first cost, maintenance, and depreciation, were also considerably less, and the chances of a breakdown much less likely. As there was a possibility of partial failure of the water supply during extreme drought in summer, it was decided to provide steam in addition to water power. The turbine was of American design, and was called the Victor. It was of a "mixed was 273 revolutions per minute ; this was at least 70 per cent. greater than the speed, of an "inward," an "outworking under a similar head. Its design have been, ingly compact, and the regulation, which was effected by opening and closing a cylindrical sluice working between des guide passages and the wheel, was all that could be ail ra. As the turbine was 16 ft . above the level ofte to the head of 20 ft . This dranght tube was of wrought ron, 14 ft . long and 3 ft . in diameter. The maximum velocity of water flowing through it was a little over 4 ft per second. The engine was a cestinghouse of simple meter by 9 in . stroke; it gave with 80 lb . of steam, at The floor space taken up by the engine was 7 ft ,
by 4 ft . The boiler was a 20 nominal horse-power
Hyde duplex, $4 \mathrm{ft}$.6 in. in diameter, and 11 ft 6 in . ynde duplex, $4 \mathrm{ft} .6 \mathrm{in}$. in diameter, and 11 fl . 6 in auare inch The working pressure was 120 . to the Gisbert Kapp and manufactured by Messrs. Johnson and Phillips, the contractors for the electrical plant, wa 30 kilowatt separately excited machine, giving an out put of 15 ampères at 2000 volts. Its speed was 750 revoutions per minute, and the frequency 75 . The armature had a cast-iron supporting ring, 28 in . in diameter and $2 \frac{1}{2}$ in. wide, provided with six arms. The armature core was of charcoal iron strip, $2 \frac{1}{2}$ in. wide, wound with pape insulation to a depth of 8 in . There were nineteen coils each containing 100 turns of 0.072 in . wire, covered to fter working some hours, was found to be 7 ohms The The arwntic feld consisted of twelve tobets on eab of the armature. The of cores and pole-pieces were of
ond wrought iron, the yoke rings of cast iron. The former were cylindrical, $3 \frac{3}{4} \mathrm{in}$. in diameter. The latter wer 4 in. by $7 \frac{1}{1}$ in. Each core was wound with six layers of fifty-eight turns per layer, with 0.102 in . wire covered to 0.117 in . The total resistance of the field after working some hours was 11.2 ohms. At full load the energy o the field was 3 per cent. of the output of the machine The framework was of substantial construction, and the machine when running was remarkably free from vibration. Its open design admitted of the free passage of ai overheating The marnets could 20 amped side for access to the armature The exciting dynamo was a 1-kilowatt machine of the Gramme type, giving 10 am peres at 100 volts. Regulation was effected by varying by hand the resistance in the field-magnet circuit. Two circuits left the station, both of which were double pole fused, and provided with double-pole switches and lightning arresters. There were some special eatures in the method of carrying out the over head mains. If wire of high insulation had been used the expenditure would have been considerable and it did not appear that any great advantage, other than ncreased durability of the mains, would have resulted tion for the mains, and to rely upon the points of support for insulation, also to use special arrangements for cutting off all surface leakage where the wires entered the consumer's premises. The authors were not aware that attention had been paid to this point before, yet it would seem that in wet weather, upon a long line of overhead mains, even with the best insulation, the surface leakage when high-tension currents were employed, would be con siderable; and if devices were not adopted for cutting this off where the wires entered buildings, leakage to eart must result, which might be a source of danger as well a of loss. The mains at Keswiok were being inst lated from The hase leading in wires, by insulated with vulcanised ndia-rubber of the highest quality and were threaded through a shackle oil insulator the wire being cemented in with Chatterton's compound. Such an arrangement should effectually cut off surface leakage from the mains. The leading-in wires entered the roof through a stonewar pipe, provided with a covering piece to keep out rain and cover a reservoir of oil in the mouth of the pipe. Th sizes of the mains were fixed for a current density of 500 amperes to the square inch. The fall of potential between the generating station and the town, was only lightly above 1 per cent. at full load. Sceel suspension onsisting of three supports che man and galvanised. One short run of underground main was being tried, the Brooks Huid system being used This system had much to recommend it ; it was simple heap, and durable, and did not take long to lay down The transformers were Kapp's patent, and they trans formed the high-tension current of 2000 volts to 100 volts A double-pole, quick-make and quick-break switch, with double-pole fuze and lightning arrester, was used in the high-tension circuit witheach transformer. Both the trans ormers and the switches were inclosed in cast-iron water tight cases. A series of experiments had been made to the total the tout efour 40 her cont at fill load and over 70 per cent, at full load. In connection with the arrange ment of this central station scheme, the authors had oce sion to make a comparison between the illuminating power of the glow lamp and gas; the results showed that he relative valnes usually given were misleading, as they almost invariably dealt with a standard London Argand a burner seldom used for ordinary lighting. This burne was generally taken as giving from 15 to 16 candle-powe or 5 cubic feet of gas consumed per hour; whereas out o a large number of ordinary burners taken haphazard, and Keswi where no y 5 cub, f^{2} of to 8 candles or less. This would show that in practice one 6 candle-power glow lamp gave approximately the same degree of light as two ordinary burners, each consuming cubic feet of gas per hour. This conclusion seemed to be borne out by the result obtained by Dr. Hopkinson who, experimenting on some ordinary burners, found the average candle-power to be 1.76 per cubic foot of gas. As regarded glow lamps, Sir David Salomons found that 100-volt 16 candle-power Edison-Swan lamps averaged 17 candle-power at 100 volts. The light had been received with great favour at Keswick, and already the demand was equal to the supply of the present plant. Supply ration had run without hitch up to the present time man and a boy being found sufficient for tending the machinery.

MODERN FRENOH ARTILLERY. No. XXII.

Thr Forges et Chantiers Gun FactoryMountain and Fibld Guns.
Is the following articles we propose to describe the various types of field and mountain artillery manufactured by the Forges et Chantiers de la Mediterranée upon the Canet system; the standard sizes of field guns are of $\mathbf{7 5}$ millimetres and 84 millimetres (2.95 in . and 3.31 in .); the standard types are each of two classes, short and long. These models only differ from each other in their dimen-
sions and weights, which vary according to the sions and weights, which vary according to the
special class of service for which they are intended. special class of service for which they are intended.
They are designed with the object of combining They are designed with the object of combining ittle weight as is possible. The efficiency of field artillery has during the last few years been largely increased by modifications in its form, and by the use of new and special powders ; at the present use of new and special powders; at the present time it is remarkable for its high power, accuracy of
aim, and long ranges, qualities which are due to the aim, and long ranges, qualities which are due to the a
comparatively great length of bore, to the form of
in such a way as to simplify the various parts, to in aler abay to parts, to nder the maintenance more easy, and to check for firing five classes of projectiles; the common their being injured by mud or sand, which by this cast-iron shell, the high capacity steel shell, shrap, arrangement is prevented from entering the mecha- nel, mitraille, and case shot. The weight of each nism, and especially from getting between the class is the same for the same calibre, 10.12 lb . for breech-block and the carrying ring.
The body of the carriage is made of two stoel de-plates strongly braced transversely by steel ford artilery. On another page are given sections and particulars of the various types for mountain

. The common shell, filled with very violent powder, continuous and automatic. While the frame is is fitted with a percussion fuze; the other types of axtremely light it has an ample margin of strength, projectiles are fired with combination time and per and the material throughout is arranged to take cussion fuzes. Each field gun is provided with a its part of the strain in the most advantageous way; limber in which is stored a part of the ammunition,
by this means the dimensions are reduced to a the remainder heing placed in the tumbrila by this means the dimensions are reduced to a the remainder being placed in the tumbrils. The minimum throughout the whole of the carriage. cartridges are stored in boxes made of wood with The amount of recoil is very small and is taken up steel mountings. Special wagons are provided with by the Lemoine cord brake, which is the standard each battery for containing tools, spare parts, \&c. ; orm adopted in France ; this brake is absolutely this material is very light and strong; the width utomatic, and releases itself as soon as the gun is brought back into firing position. between the wheels is the same as that for the gun carriages, so that they can pass through very an amplitude of from -6 deg. to +20 deg., and the results of firing trials with 75 -millimetre moun an amplitude of from - 6 deg. to +20 deg., and the results of firing trials with 75 -millimetre moun-
can be regulated with great accuracy and speed. tain guns carried out between 1887 and 1889 ; the

Fig. 237. 75-millimetre mountain gun and boat gun caisson.
the chamber, to the nature of the powder, and to While preserving ample stability in the carriage, data are sufficiently detailed to show clearly tho the character of the projectiles. The great strength the width of wheel base has been reduced; such field of the material employed in these small-bore guns, artillery can therefore be drawn through narrower allows the use of veryhigh charges, and consequently paths than those which are required for the passage of the attainment of correspondingly high initial of standard French or German field guns.
velocities. It is almost unnecessary to say that velocities. It is almost unnecessary to say that
both as regards the quality of steel employed, and the care in its subsequent manipulation, as much trouble is taken in the selection of material and in its manufacture, as is done with guns of high calibre; the steel used in all field guns is forged, tempered, and afterwards annealed, and on account of the relatively small weights employed, and the uniformity of form adopted, the tempering and other operations are carried out under the best possible conditions to obtain a maximum degree of resistance for the gun. The jacket which reinforces the rear part of the tube possesses an equal strength both longitudinally and transversely, and it is claimed for the Canet system that no such high degree of longitudinal strength is obtained either in the French Government gun factories, nor at the Krupp Works. Rapidity of firing and simplicity of handling are secured by the adoption of a system of breechclosing adopted from the French standard type but modified in many important details. Considerable changes have also been made in the plastic obturator of De Bange in order to avoid hardness in working, and modifications have been introduced in the method of firing the gun, while safety appliances have been added consisting mainly of an automatic vent protection; thanks to this simple addition it is impossible for premature discharge to take place, or for the gun to be fired until the breech is entirely closed. The necessity for such a safety apparatus, which it is stated does not exist either in the French standard type, nor in the Krupp field guns, has been fully realised in consequence of various accidents that have happened from the accidental premature firing of the cartridge, on many occasions. The form of the breech screw has been modified
table XV.-Firing Trests of Canet Mountain Guns 75 mm. (2.95 in.) made at the Hoc Polygon and at

intended for service in hilly countries, where their transport, except on the backs of animals, is difficult or impossible. The standard type for these guns has a bore of 2.95 in . and the weight is 218 lb . ; the comparatively large calibre enables a destructive fire with relatively heavy projectiles to be maintained while the weights are kept down as low as possible. Considerable power and accuracy at long range are claimed for this class of gun, these qualities being due to the form of the powder chamber, the nature of the powder, and the character of the projectile. The gun is made of a single block of steel, forged, oil-tempered, and annealed in the usual way; the breech-block, the trunnion ring, and a ring over the breech, are the only separate parts to the construction. The method of breechclosing is very similar to that employed for the field guns just described, the same system of gas and fuze checks being also used, as well as the various safety appliances. The carriage consists of two steel frames connected by cross-bracing, and the mode of checking the recoil is similar to that adopted in the field guns; the gun can be very easily dismounted from the carriage, and the latter can be divided so as to reduce the weight of transport. The gun can be trained for elevation from -20 deg. to +20 deg. Excepting for size the projectiles correspond with those for field guns both as to class and construc. tion ; the weight, however, is, as stated above, 10.14 lb . The system of subdivision applied to the gun and carriage, the limber ammunition wagons, \&c., is such that no single piece exceeds 220 lb . in weight.
The powder chamber* both for field and mountain guns is cylindrical and considerably larger in diameter than the bore ; the length is a little more than 5 calibres. The rifling consists of twenty-two grooves on an increasing pitch. The breechclosing mechanism is illustrated by Figs. 224 to 230 ; its principal organ is the steel block with interprincipal organ is the steel block with inter-
rupted screw threads divided into three equal rupted screw threads divided into three equal
sectors, and a bronze carrying ring hinged to the side of the breech ; the central position of this ring in relation to the bore of the gun is secured by coning out a seat for the ring-which is tapered to correspond-in a recess in the breech of the gun, as shown in Fig. 224. A recess is cut in the back of the ring as shown at a in Fig. 224, and in this an enlargement of the breech-block takes its bear-
eft and shift the latch in such a way that it sponding recess cut in the face of the block
eft and shift the latch in such a way that it breech-block securely. In closing the breech a stud which is screwed into the back of the gun, enters an opening made in the latch and forces the inner projection out of its seat and at the same time causes the outer latch to enter a recess cut in the gun and $s 0$ making the latter fast with the ring. Figs. 224 and 225 illustrate in detail the breechclosing mechanism of these guns, while Figs. 231 to 237 show the form employed for a gun of somewhat different character but which may be conveniently referred to in this article. This is the standard type of

Fig 225.
ponding recess cut in the face of the block. On the axis of the main lever is a cam h, Fig. 235, with teeth on one side gearing into the rack on the bolt, and with a forked projection k on the other side. To the breech-block is attached an extractor, the head of which, m, projects somewhat into a recess cut in the carrier ring; the bent lever of this extractor, whioh is mounted on an axis as shown, is constantly pushed outwards by s small piral spring recessed in the block. When the piral spring recosm upwards to ock. When the main lever is thrown upwards to open the breech,
the finger d of the cam presses against the bolt and the finger d of the cam presses against the bolt and
forces it down. carrying with it the hammer, the

BREECHLOADING MRCHANISM FOR MOUNTAIN AND FIRLI) GUNS.

BREECHLOADING MRCHANIBM FOR 75-MILLIMETRE BOAT GUN.
ing ; this arrangement appears an extremely useful one, as it helps to exclude dust or dirt from working its way into the breech. In the inward and outward movement through the ring, the breechblock is guided by the projecting edges of the lower threaded segments; the principal working lever is hung vertically to the block as shown in Fig. 225. The block is secured either to the ring or to the gun by means of the bolt d see (Fig. 196), and which is placed in a recess on the right-hand side of the ring; when the breech is closed the projection is locked in a recess made in the side of the breech-block, while the outer projection b extends outside the ring and enters a recess cut in the jacket. When the breech is opened and the block is drawn to the rear, the bolt does not move and the latch remains in its place, but at the end of the movement, the effect of the block striking the ring is to force the bolt towards the

[^0]boat gun of 75 milimetres, made on the Canet system at Havre.
In this arrangement the stem of the obturator is screwed into the block and the mushroom head is loose upon it. The firing mechanism and safety device are as follows. A bolt A slides in a vertical groove cut in the back of the block; at the upper end of this bolt is a short rack b, Fig. 235, on the left side of which is a recess c that receives the finger d of a cam on the main lever axis. Below the recess c is a rectangular opening e and below this again is fixed the striker B, which is held back by a spiral spring; the head of the striker projects from the face of the bolt, and beneath it is a recess in the bolt through which passes the finger l of the hammer C; this hammer turns upon the centre o, and the finger l is exposed constantly to the pressure from a spiral spring lodged in a recess cut in the lower part of the breech-block at l^{1}. A flat spring with a projection at the bottom is attached to the bolt and holds it fast by entering a corre-
finger l of which, compressing the spiral spring, turns the head of the hammer away from the bolt, but when this movement has continued until the axis of the hammer is lower than the centre of the spring, the effect of the latter is to hold the hammer at half-cock. In this position the projection attached to the flat spring fastened to the bolt enters the recess in the block and keeps all the parts fixed; the operation of unfastening the breechblock can then be continued. With the turning of the block, however, the extracting lever strikes against a stop on the inside of the ring and starts the cartridge case. In closing the breech the various operations are reversed; the gun is fired by means of a lanyard passed over the hook k of the cam h; by pulling on this cord, the bolt is lifted through the teeth on the cam, gearing into those on the rack of the bolt ; when the movement has been continued until the axis of the hammes is above the centre of the spring, the top of the bolt strikes against stop p fixed to the gun, and

Fig. 234.

just as this takes place the hammer has been driven against the fuze and the gun is fired.
It has been found unadvisable to fit guns for this purpose with friction fuzes, because when they are used on boat service, the man firing the gun must often stand behind it, and in this position he would be exposed to the danger of a rush of gas, or possibly the projection of a part of the fuze. For this percussion locks. The equipment of this weapon always comprises water-tight iron caissons that serve for the transport of ammunition, and on occasion for baggage and ambulance purposes.

Fig. 237, page 667, illustrates a mountain gun, with the caisson made for the boat gun. Both types of weapon are identical, except for the firing me-
excepting when the breech is fully closed, covers the vent. The rising and falling movement required to operate this safety device is controlled by the combined action of the starting lever, and the turning of the breech-block in its seat. It will be seen that on the spindle upon which the lever is secured, is fastened the cam h, the tooth formed on which gears into the two teeth $i i$ cut upon the upper par of the sliding bolt C ; the front face of this bolt has a slot cut on it in which enters the finger attached to the upper part of the ring ; one part of this slot is straight and is cut parallel to the axis of the bolt, the other part is curved. In a recess at the top of the bolt is fixed the small double-
ded lever E shown in Fig. 227; this turns upon e axis o and a flat spring l presses constantly upon

NOTE--The various weights given in the following Table are those to which the nearest approximation is
made, but the actual weights are subject to slight variations. The fuze employed for the different
kinds of shell is a combination time and percussion fuze; except for common shell, in which a percussion fuze is employed.

Fig. 239.

Fig. 241,-Mitraille

こ

Fig! 241.

Fig.242.

chanism, as already explained, and they each weigh 220 lb . The mountain gun and carriage are arranged to be taken apart for mule transport, and there is no caisson. The boat guns, which are also intended to be used on shore by landing parties, can be drawn by hand, or by mules if available. The caisson for this gun contains two ammunition boxes of ten rounds each. The various parts are, however, so designed that they can, in case of necessity, be easily separated and loaded upon animals when the conditions of transport require it,
The obturator of the block shown in Fig. 224 is of a modified De Bange pattern with tin discs and brass split rings. A collar B is placed at the rear end of the movable stem and is fastened to it by a staple g; the stem is drilled to receive the fuze and is bushed in front with a copper bushing. The safety apparatus is illustrated by Figs. 226 to 230, and is of a very ingenious character ; it consists of the bolt C shown separately in Figs. 226 and 227 this bolt projects at right angles to the breech of gainst the upper end of the lever \mathbf{E} causes the bolt the gun and terminates in an enlarged end D, which, to fall into the position shown in Fig 230 ; the pro
ection m then enters the recess made for it, and locks the bolt. At this moment the cam h on the lever axis is free of the teeth i on the upper part of the bolt and the vent is thus absolutely protected. The reverse operations take place when the breech is closed and when the block is securely fixed in its seat, the safety shield is lifted clear of the vent and the gun can be fired (Fig. 228).
Figs. 238 to 242 illustrate the different kinds of projectiles for the 75 -millimetre mountain gun; the weights are given in Table XVI.

DREDGING IN THE MERSEY DOCK

 ESTATE.(Concluded from page 639.)
Third Period, 1885 to the Present Time.-The increase of the dock area at Liverpool and Birkenhead by the opening of certain new docks from time to time, and the large increase due to the completion of the New North Dock system, rendered it necessary in 1884 that additional dredging appliances should be obtained. A small Priestman dipper dredger, mounted on one of the ladder dredgers, had been in use for some time, and from the satisfactory manner in which it worked, it was determined to adopt that kind of appliance on a very much larger scale. After mature consideration it was decided that a large steam hopper barge should be fitted with four Priestman's grab buckets. The vessel was to be 185 ft . long and 33 ft . beam, with a hopper capacity of 800° cubic yards, the engine to be compound and the speed 10 knots, the "grabs" to be of the A size, and to be capable of raising about 36 cubic feet per lift. The contract was let to Messrs. Simons, and was completed by them in a highly satisfactory manner in 1885 the cranes and grab buckets having been made by Messrs. Priestman, of Hull. In Fig. 6 on page 678 we give a perspective view of this vessel, while a longitudinal section, plan, and cross-section are shown by Figs. 7, 8, and 9 on pages 670 and 671.
The advantages of this system of working soon became apparent. The vessel named "No. 9," being self-contained, could proceed direct to dock on returning from the tipping ground, while she occupied less room in dock than a dredger and steam hopper, a matter of great importance in docks crowded with shipping. She carried nominally as much as two of the largest hoppers, but in reality a good deal more, as the mud being raised in a larger volume than with the smal buckets of the ladders, is more solid, and as a consequence there is less slush and water. Great as were the advantages in connection with this mode of working, there was one drawback, and that was the wear and tear to the grab buckets, although the workmanship of these buckets was excellent, and the materials of good quality. Mr. Morgan, the superintendent of dredging, looked into the matter, and after consideration a bucket of a new type was made and tried. This gave such excellent results that it is now being employed by the Mersey Dock Board for all the dipper dredgers in use by them.
The general construction of the bucket, which Mr. Morgan has patented, is shown by Figs. 10 to 13 on page 672 , which scarely need description. It is worked by two chains passing over the jib-head of the crane. The lifting chain is shackled to a large cam-shaped ring or eccentric fixed on a sleeve, which turns loosely on a shaft passing along the apex of the bucket from one end to the other; to the same sleeve are fixed two smaller eccentrics, one on each side of the centre, and to these are attached chains of fixed length made fast to an upper crosshead, from which connecting-rods pass the top edges of the sides of the buctret. The opening chain is attached to the crosshead referred to. When the bucket is open the lifting chain lies wound round the large eccentric. The closing is effected by hauling on the lifting chain, thoreby winding in the chains on the small eccentrics, and so pulling down the crosshead, the connecting-rods from which force the sides of the bucket together. The bucket opens when the opening chain is held, and the lifting chain let go. The central shaft then lowers away from the crosshead and the sides of the bucket expand, until the short chains between the latter and the small eccentrics are fully unwound; at the same time a certain length of the slack of the lifting chain becomes wound on the large eccentric. The eccentrics on the shaft are so arranged as to give a large power towards closing the bucket at the commencement of closing, it being then desirable

FIELD GUNS AND MOUNTINGS ON THE CANET SYSTEM. the forges et chantiers de la mediterranée, havre.

similar poles together. Each system is securely London, are well represented by ammeters, volt- scribed in a paper read by Major-General Webber fixed to a circular brass frame, which fits on to the meters, galvanometers, proportional coils, resistance cylindrical case of the instrument in such a way boxes, and the standard cells. They have also on that the systems are capable of being turned round, the roof of the Machinery Hall a search light pro-
together or separately. The instrument has a jector of 20,000 candle-power, which is worked together or separately. The instrument has a jector of 20,000 candle-power, which
tangent scale, which is adjusted in its position from one of their Westminster dynamos.
tangent scale, which is adjusted in its position from one of their Westminster dynamos.
before the instrument is sent out, so that the One of the largest and most complete demonstraneedle indicates equal differences of readings for tions of what electricity can do for lighting, for equal differences of current. There is also shown locomotion, and for general mechanical driving puran ampere gauge, of which there are different types poses, is that of the Electric Construction Corporamade, ranging from .5 to 500 ampères. These, with other instruments on the stand, will be viewed with great interest.
On a stand in the north court of the main building Professor James Blyth, of the Glasgow and West of Scotland Technical College, also exhibits several ingenious appliances for electric measurements. These include among others a current weigher, which gives the results in absolute measurement. In his current and voltmeters he reaches his result by determining the strain of a spring produced by the attraction of a current in a solenoid acting on a thin soft iron armature. An interesting instrument is his volt and current thermometer, in which a current is used to produce a change of temperature in a long thread of mercury in a glass tube, and from the expansion of which the measure-
ments are determined. All his exhibits, it may be ments are determined. All his exhibits, it may be
said, indicate the type of work that the student of said, indicate the type of work that the student of
electricity in the Glasgow Technical College may be expected to face, and demonstrate the good fortune of the directors in having the services of a man capable of devising such instruments.

Messrs. Clark, Latimer, Muirhead, and Co distribution exemplified on the stand is that adopted
before the Mechanical Science Section of the British Association at Newcastle, and noticed in our report of the meetings.* Among the other exhibits of the application of electricity here, we may notice of the application of electric tramcar, as in use in Birmingham.
The India-Rubber, Gutta-Percha, and Telegraph Works Company, Limited, of the well-known Silvertown Works, although represented only byone exhibit, must take a prominent position, as the machine has many merits. The chief characteristic is the compactness, the engine and dynamo being bolted on one bedplate of cast iron, occupying together sbout 10 ft . The driving engine is the "Ggether about 10 ft . The driving engine is the "Globe" compound direct-acting type, made by Messrs. Musgrave and Sons, Bolton. The cylinders are $8 \frac{1}{2} \mathrm{in}$. and 15 in . in diameter, and the stroke 8 in. There is a single balanced valve between the cylinders. The whole engine is inclosed in sheetiron casing, and the well in which the crank works is partly filled with lubricating oil. The engine works under a pressure of 100 lb ., and up to 370 revolutions per minute, the piston speed being 00 ft The 350 speres, the 500 ft . The dynamo develops 350 amperes, fiel
electromotive force being 105 volts. The fiel electromotive force being 105 volts. The field magnets, which weigh 3 tons 8 cwt ., are of moor iron, and the armature weighs 21 cwt .
An adjoining exhibit offers a contrast to such dynamos as that just described. It bears the date February 22, 1844, and is one of the earliest magneto-electric machines constructed on the principle of Faraday's discovery. The maker wis
*See Enginerring, vol. xliii., page 357.

THE CANET BREECH MECHANISM FOR A 75-MILLIMETRE BOAT GUN.

Fic. 254.

Fig. 255.

Fia. 256.
Fia. 257.
Mr. J. S. Woolrich. Bobbins wound with copper \mid hibit motors similar to those in these launches. artistic fittings which manufacturers find it to their wire are fixed on the rim of a wheel and caused to pass by the rotation of the wheel through the jaws of four sets of permanent steel magnets placed of four sets of permanent stee magnets placed
symmetrically. The wires from the separate bobbins run to the nave of the wheel, where the currents are collected in the usual way. The presence of this primitive yet wonderfully perfect results of electrical engineering with Faraday's farreaching discovery of the seemingly insignificant fact that if a wire loop be moved to cut the lines of force in a magnetic field a current will flow in that loop.
The firm of Ernest Scott and Co., Newcastle-on-Tyne, have a good exhibit of electric lighting plant for ordinary and ship use. The machines are of the alternating type giving a very high Voltage and are associated with transformers, of
which some examples are shown. One machine driven by a Robey vertical engine, 84 in . cylinder by 8 in. stroke, develops 10 ampères at 1000 volts, the armature making 1200 revolutions. A type of plant for ship installations is shown. It consists of a $6 \frac{1}{2} \mathrm{in}$. by 6 in . vertical high-speed engine, coupled direct to a dynamo with a Gramme ring armature, making 325 revolutions per minute, giving 65 volts, 70 ampères, sufficient to maintain 100 incandescent lights. One or two of their machines are used for lighting stands.

The conversion of the energy of electricity into mechanical work is illustrated at the stand of Messrs. Immisch and Co., well known in connection with the construction of electric motors for proWith the construction of electric motors for pro-
pelling the Thames electric launches. They ex-

On their stands is also shown a tramcar motor advantage working to 1000 revolutions and developing 10 the North Metropolitan Tramway Company at Barking. These motors occupy little space and are of great service for many purposes. Such as in mining operations, whether for haulage, or for driving drills, or coal-cutting machines. The relaive work done to the weight of the motor is bout one-horse power per hundredweight. A motor may be seen driving an Ingersoll per-
cussion rock drill, the current being supplied from one of Messrs. King, Brown, and Co.'s dynamos. Excellent exhibits in dynamos and plant generally are shown by Messrs. Prentice, Napier and Co., Suffolk; Norman and Sons, Limited, Glasgow; Woodside Electric Company, Glasgow Hartnell Wilson, Leeds ; King, Brown, and Co., Edinburgh ; Kennedy Rankin and Co., Kilmarnock; the Brush Company, and others. Sir William Vavassour shows primary batteries chiefly for electric lighting, and the Lord Justice Clerk of the Court of Session, better known as Mr. J. H. A. Macdonald, is also an exhibitor. There are three electric welding machines, from Mr. Richard Miller, Glasgow.
However much the ordinary visitor may be impressed with the importance of electricity for practical uses by the magnificent demonstration of the methods of producing, distributing, and using is power, yet the enormous strides which have been and are being made will be more vividly
enforced by the brilliant array on several stands of

MODERN FRENCH ARTILLERY.

No. XXIII.
The Forars et Chantiers Gun Factory-
Mountain and Field Guns-continued.
The carriages for both mountain and field artillery are similar in design, the principal differences being those involved in constructing the former in separate parts that are light enough for mule transport and can be easily and rapidly put together. The general appearance of the various mountings is illustrated by the views Figs. 248 to 253 (page 694). The lightest form of carriage is shown in Figs. 248 and 251 ; it is made of two side plates of steel connected at the upper and lower ends by steel castings, the lower junction-piece being provided with the necessary attachments for coupling to the limber and trainng the gun; the side frames are in addition strongly braced together by cross-ties. The frame is mounted on steel wheels with bronze centres; the wheels are 37 in . in diameter for the mountain guns, and 47 in . for the field artillery ; the distance between the wheels varies from about 27 in . to 42 in. ; the total weight of the complete carriage is 308 lb . for the mountain, and 858 lh . for the field guns. The illustrations show the mode of training these guns for elevation; the arrangement consist imply of a lever A, projections on the breech of the gun, while the other end is connected to a nut mounted on a

Table XVII.-Particulars of Weights of Various Typrs of Pronectiles for Canet Firld Guns.

Total weight .. $11.440 \quad 6.200$

screw that can be traversed by means of a crank handle as shown; the angular range for mountain guns is from -20 deg. to +20 deg , and -6 deg . to +20 deg. for field guns. These guns are trained horizontally by shifting the trailing end of the carriage, rings being provided for that purpose as shown. A type of brake largely employed is that illustrated in Figs. 248 and 251, and already referred to as on the Lemoine system. It consists of the following principal parts : (1) A flat plate spring a held in front of the axle by two stirrups b; (2) a rack c, Fig. 251, supported at one end by the spring just Fig. 251, supported at one end by the spring just
referred to, and at the other by a bracket d attached to the stirrups; this rack passes through a guide bolted beneath the axle and formed with teeth that can gear into the rack; for a part of its length it is also cut with a screw thread on which is placed the nut f by which the range of the brake action can be regulated. At each end the flat spring is held by cords which are passed around the inner boss of the wheel centres, and beyond are attached to the extremities of the rods i which are jointed to the bars extremities of the rods i which are jointed to the bars
m, that pass from the frame to the wheels, where they carry the brake-blocks. The operation of this brake is very simple; the force of recoil tends to drive the gun and carriage backwards; in doing this, however, the cords wound around the boss of the wheels are affected and set up a pull on the brake levers by the action of the two levers $i i$, the elasticity of the system boing secured by the action of the plate spring to which the cords are attached; the degree of recoil can be adjusted by the position of the nut f on the rack bar. This simple form of brake is not applicable to the heavier types of field guns, and accordingly a different pattern is used for the heavier models ; this pattern is clearly illustrated in Figs. 249 and 250 . The side frames of the carriage are not attached direct to the axle but are articulated with it and are further connected by means of an hydraulic brake; this arrangement is carried out as follows. On the axle are placed two sleeves A, on each of which are two projections; underneath each plate forming the side frame are two brackets between which pass the projections on the sleeve and to which they are secured by the bolt B; by this means the frame can turn round the axle. The brake arrangement is shown in the figures; the cylinder is ex-
tended at the rear in such a way as to form a tended at the rear in such a way as to form a
trunnion through which a pin E passes, attaching it to the crossbar D, connecting the two side frames together; the piston-rod of the brake is connected to a sleeve mounted on the centre of the axle. Fig. 249 is a section through the cylinder, and from this it will be seen that while the piston is circular, in the walls of the cylinder four passages are cut, the areas of which are variable; the cylinder is made in two lengths, the forward half being screwed into the rear half and provided in front with a gland through which the piston-rod passes; within this part of the cylinder is placed a coiled spring, the smaller end of which presses against the piston ; beneath the latter are placed two disc springs to take up the shock of the gun when it comes back into firing position-the position shown in Fig. 249. The action of this arrangement is very simple; as soon as the gun is fired the recoil throws it backwards, pivotting around the axle A; the extreme position of the bolt B and the cylinder trunnion F are shown in dotted lines at $B^{\prime} \mathbf{E}^{1}$ in the section; this movement causes the piston to be displaced in the cylinder, compressing the coiled spring and forcing the liquid past the piston through the passages in the wall of the cylinder. The recoil being completed, the spring which has been compressed by ts action now expands and brings the gun back slowly into firing position. In addition to this arrangement the brake-blocks on the wheels are thrown into action; these blocks are mounted on a crossbar F, Fig. 252, that passes from one wheel to another, and is held in place by two levers $b b$ that are mounted eccentrically upon the axle, the movement of which forces the brakes upon the wheels; of course these blocks can be removed from the wheels at any moment. The device for training in elevation, although resembling that already described for the lighter type of gun, differs in its details. Instead of a rod being attached to the breech of the gun and to the elevating screw, a cylinder is employed containing two coiled springs separated from each other by a piston, the rod of which is secured to the elevating screw. By this means an elastic connection is obtained between the training screw and the gun, and the shock caused by firing is absorbed by the springs. With
this type of carriage the wheels are $52 \frac{1}{2}$ in. in diameter, and the width between them is about 37 in. The weight of the complete carriage is 1078 lb ., and the limiting angles of fire range from -6 deg. to +20 deg .

Figs. 243 to 247 are sections of the various types of projectiles made for the 75 -millimetre field gun. It will be seen that while the general characteristics are the same, they differ slightly in form and dimensions, and the total weight is greater, $\overline{0} .2$ kilos. (11.44 lb .) As in the mountain gun ammunition, the diameter of the shot is reduced over a considerable part of its length from 74.6 millimetres to $\mathbf{7 3 . 6}$ millimetres; the position of the copper band is the same in all cases. Except for the case shot the head is open to receive the fuze. It will be noticed in Figs. 241 and 246 that the mitraille case consists of a cast-iron head and base, the former being cored out to hold the bursting charge. The being cored out to hold the bursting charge. The
balls are placed between the head and base, the balls are placed between the head and base, the
whole being enveloped in a steel envelope, the whole being enveloped in a steel envelope, the
thickness of which has to be very carefully adjusted, to secure the shell opening properly at the moment of rupture, and at the same time to prevent it from bursting during flight.
All the foregoing are the latest and most approved types, the patterns being dated April, 1890. Table XVII. gives particulars of the weights of these projectiles.
projecties.
Table XVIII. (see next page) contains particulars of firing tests made with the Canet field guns of 75 -millimetre bore at the Polygon at Havre and at Sevran-Livry, between January, 1887, and January, 1890. The tests with smokeless powder afford an interesting comparison with those fired with ordinary charges.

In our last article (see page 668 ante) we referred to the special breechloading mechanism for bost guns; Figs. 254 to 257 (page 695) are illustrations of guns; Figs. 254 to 257 (page 695) are illustrations of
such a breech, and show the gun closed and ready such a breech, and show the gun closed and ready
for firing (Fig. 254), the block turned round into the for firing (Fig. 254), the block turned round into the
unlocked position for withdrawal (Fig. 255), the block partly drawn from its seat (Fig. 256), and the breech open for the reception of a new charge (Fig. 257). The movements of closing are of course similar but reversed. As we have already explained, the breech of these guns is provided for firing percussion fuzes, friction fuzes being unadvisable on account of the generally enforced proximity of the man to the gun when firing. The hook to which the lanyard is attached that trips the hammer is seen in Fig. 256, in which position, as well as in al others, except Fig. 254, where the breech is closed and locked, no pull would affect the hammer, which is held fast by a spring engaging in a recess in the block aq already explained, while the block is being turned into the position shown in Fig. 255 ; during this movement the hammer is cocked, and continues so, being held by the safety spring.

ON THE LAWS OF STEAMSHIP PROPULSION.

By Robert Mansel, Whiteinch, Glasgow.

In 1857, writing some controversial letters in an engineering journal named the Artisan, I entered upon an exposition and defence of the quantities known as "Admiralty coefficients." About that time these had been subjected to a virulent time these had been subjected to a virulent of their nature and scope. I have always insisted, in their inception they were founded upon correct principles; but there were "ignored and misrepresented elements," and in guarded language led up to a further step; they had been rendered mis leading and meaningless by the introduction of a specious but false hypothesis as to the law of the pecistance. Thus the doctrine in the asme machine doing work at different speeds, or equally, the cases doing work at different speeds, or equally, the cases of similar, but different machines, doing like work, the ratio of the work done to the amount of power
taken to do it being necessarily the measure of the comparative efficiency of the various machines employed ; there was nothing in this other than a mechanical truism, which, however, has to be taken in connection with the following mechanical principle, in the usually presented aspect of the subject, seemingly quite a paradox, and therefore, although of paramount importance, put aside and utterly neglected.

Two hundred years ago Sir Isaac Newton, in a scholium to the "Third Law of Motion," made the statement: In every machine it would be found, the quantities, the gross work done, and the gross
table XVIII.-Firing Tests made with Canet Field Guns 75 ma. (2.99 in.) at Hoc and Sevran-Liviy, between Januabt, 1887, and January, 1890.-(See preceding page.)

power doing it, would be always equal to each for its elements. Many investigators got involved
other. To tix ideas, suppose we take the displacement form of the Admiralty coefficient :

$$
C=\frac{D^{\frac{3}{3}} V^{3}}{E^{3}}
$$

The physical interpretation of this was, or ought to have been, the numerator is the definite expression for the gross work done when a vessel of displacement D is propelled at the rate of V knots by the expended gross indicated horse-power E. Now any one possessing even a slight knowledge of the subject is aware, this formula, applied to the actual rial data of any steam vessel, gives values for C with violent, capricious, and inexplicable variations. Newton's proposition, therefore, seemed supremely ridiculous, and never showed in the running at all; while the saltatory antics of the coefficient C have haval architects were to derive inspiration as to "comparative efficiency." At least, judging from the explanations given with the "Trial Data of statements, this seems to have been the theory at the British Admiralty. It, of course, remained open for any one to challenge the numerator as to whether for any one to challenge the numerator as to whether it was a true measure of the work done, and a rast
amount of misdirected acumen has been employed amount of misdirected acumen has been employed
in a haze over the question, whether immerged mid area, surface, or displacement ought to be taken for the first factor, and even a man of clear insight, the late Dr. Rankine, failed to perceive this was a trivial matter, scarcely touching the real difficulty, and so he concluded the immerged frictional surface, multiplied by a function of the water-line angles; or, as he termed it, the " augmented surface," was the one thing needful. Another class of investigators, while asserting the resistance to vary as the square of the velocity V^{2}, in the same breath challenged the V^{3} factor in the representation of the power. This was simply ignorance of mechanical principles, supplemented by confused notions as to mathematical ones. Since, to assert a V^{2} resistance, could be overcome at a V speed, by other than a power varying as V^{3}, is quite as absurd as for an arithmetician to deduce that two and one taken together give something different from three. It is a mathematical necessity. If the power be not proportional to the cube, the resistance must be varying in some other ratio than the square. Dr. Rankine's investigation, the earlier one of Professor Reéch, and its recent application by the late Dr. Froude, as well as the published values of the Admiralty coefficients, each and all directly imply and assert the truth of the
hypothesis, that the resistance varies as the square,
and, consequently, that the power varies as the cube of the speed, and ipso facto are necessarily erroneous; the key to the enigma being the simple erroneous; the kin the usual circumstances of steamship profact, in the usual circumstances of steamship pro-
pulsion, the resistance does not vary in the ratio of pulsion, the resistance does not vary in the ratio of
the square of the speed, and hence the power does not vary as the cube. To find the law of the resistance, and thence the true relation between the power and speed, it is, probably, simplest to build up from the following proposition: The differential coefficient, with respect to the speed of the logarithm of the resistance, is equal to a smal coefficient, constant for adjacent ranges of speed coefficient, constant for adjacent ranges of speed,
through which the circumstances of trial are unthrough which the circumstances of trial are
changed. In symbols this is expressed thus:

$$
\frac{d \log \mathrm{R}}{d \mathrm{~V}}=a .
$$

Where \mathbf{R} denotes the resistance, and a this small constant coefficient ; again,
$d \log \mathrm{R}=a . d \mathrm{~V}$,
which, by the simplest application of the integral calculus, gives,
$\log \mathrm{R}=a \mathrm{~V}+\log b$
The constant introduced by the integration being taken of the form $\log b$.

$$
\begin{equation*}
\therefore R=b \log ^{-1} a V=b 10^{a \nabla} \tag{I.}
\end{equation*}
$$

is the true form of the resistance, and by adding $\log V$ to each member of the preceding equation we also have,
or, again,

$$
\log \mathrm{R}+\log \mathrm{V}=\log b+\log \mathrm{V}+a \mathrm{~V}
$$

$\log R V=\log b V+a V$.
Now R V is that definite existence which Newton defined as actio agentis, "action of the agent," which, eighty years later, John Smeaton named mechanic power, and which is understood, when, now-a-days, we write or speak of energy, measuring it in James Watt's conventional horse-power units. So that, denoting this by E, we have,
$\log \mathrm{E}=\log b \mathrm{~V}+a \mathrm{~V}$,
which implies the following forms :

$$
\begin{equation*}
\mathbf{E}=b \mathrm{~V} \log ^{-1} a \mathrm{~V}=b \mathrm{~V} 10^{a \mathrm{~V}} \tag{II.}
\end{equation*}
$$

and the incorrect Admiralty formula,

$$
\mathrm{E}=\frac{\mathrm{D}^{3} \mathrm{~V}^{3}}{\mathrm{C}}
$$

can be changed into the very approximate correct form,

$$
\begin{equation*}
E=\frac{v^{\frac{7}{8}}}{\bar{C}^{1}} \mathrm{~V} 10^{\boldsymbol{n} \mathrm{V}} \tag{a}
\end{equation*}
$$

susceptible of another important modification, as follows :

$$
\begin{equation*}
E=D^{8} V 10^{a(V-x)} \tag{b}
\end{equation*}
$$

in which the divisor of the second member is replaced by a special speed X, diminishing the exponential speed factor. It will easily be noticed, this X is a speed, such that $X=V$ will give,

$$
\mathbf{E}=\mathrm{D}^{\frac{8}{3}} \mathbf{X}
$$

and by taking the difference of equations (b) and (II.) we have:

$$
0=\log \mathrm{D}^{8}-\log b-\mathrm{X} a .
$$

Whence, the explicit value of X is seen to be,

$$
\begin{equation*}
X=\frac{1}{a}\left(\log D^{\frac{t}{t}}-\log b\right) \tag{c}
\end{equation*}
$$

These equations involve the relation of power and speed, so long as the quantity a remains constant, but a very limited experience, especially with fine vessels, driven over a great range of speeds, will show us, in the same vessel, we may have two or even three values for a, with sympathetic changes on b, X, and other constants in various easily deduced allied formulas (which I have pointed out, as involved in the foregoing formulas). In other terms, we have these quantities constant through a certain range of speed, beyond which they change to other values, and remain constant through another range ; finally changing to a third set of values at the highest speeds attained in practice. General explanations, however, unless accompanied by actual examples, are difficult to follow out ; these may be readily obtained from any carefully conducted, honestly reported, data of steamship trials. The "Admiralty Tables of Trial Data" are a common and most valuable treasury of such facts. The importance of the subject may warrant some space and attention being given to the application. I noticed recently a report of the trials of H.M.S.S. Widgeon, a comparatively small vessel, 165 ft . by 31 ft . and 805 tons displacement.

THE CANET SYSTEM OF FIELD ARTILLERY.

(For Description, see mext Page.)

Fig. 258. Canet field gun and limber.

Fig. 259. Canbt field aun showing method of training.

LITERATURE.

Stcam and other Prime Moiers. A Text-Book both Theo retical and Practical. By Henry Evers, LL.D retical and Practical.
We are informed in the author's preface to this work that the title should have been "Steam and a ieve other Prime Movers." That this correction was required will be evident when on examination it is found that no prime mover at all other than a steam engine is in any way considered; the only approach to such consideration being the mention of gas engines as one type of engine, and this fact by itself hardly gives much practical or theoretical assistance to the willing student; this being -again according to the preface-the aim of the author.
It is fortunate that the aim was thus described, because otherwise it would have been extremely
difficult to understand why the author had ever that Rankine-and hisbook, although not of course written the work under consideration ; there still comparable with Dr. Evers', was yet a very fair one remains the dificulty, why he thought that the -used the title The Steam Engine and other contents of his book would be of any value in Prime Movers," not "Steam," \&c., and he defined accomplishing the result aimed at. But it is at any as a prime mover a machine by which the powers rate some satisfaction to know that there was an of nature are utilised. It is probable that this aim, and what it was. difference of ideas on what constitutes a prime So far we have not advanced beyond the preface, mover accounts for the defect first mentioned, but the book is so full of singular "facts," that there Dr. Evers probably considering steam by itself to is hardly a page about which one or two columns be one kind of prime mover, a marine engine or might not be written. The very title-page itself land engine as a different kind, and a rotary engine is suggestive. For it at once suggests the inquiry as another kind again, and so on.
whether the author exactly knows what a prime Perhaps now it will be well to take some notice mover is. There was some time ago an author of of the contents of the book itself ; and it will prosome repute, of whom Dr. Evers may have heard, bably be expected from the preceding remarks that named Rankine, who also wrote a treatise on prime such notice will not be extremely favourable. This movers. Now that book is not compared to the impression is perfectly correct, in fact, we may say present, except that when such very similar titles that, taken as a whole it would be difficult to are chosen, the comparison naturally suggests imagine a worse book on the subject it is supposed itself. The point, however, for consideration is to treat. There are undoubtedly some items of
useful information, but they will be found in nearly all cases to be between quotation marks, and will be better studied in their original places than in the pages of this book. Where, however, the author's own ideas are set forth, it is difficult to say which is the more useless, the theoretical or the practical ; perhaps on the whole the former is the worst, because every one picks up his practical knowledge for himself by his own observation, but in theory the effects of bad teaching may never be effaced.
It would be impossible within the limits of an ordinary review to notice one tithe of the errors contsined in the book, this would, in fact, take a book as large if not larger than the original, so a ew specimens must suffice
Chapter I. deals with Heat and Steam, and as a specimen of the lucid nature of the definitions generally we may take the following: "The temperature of a body is its thermal state considered with reference to its power of communicating heat to other bodies." It would be incorrect to say this is a wrong definition, but it is pretty certain that after hearing it, a student would possess no more dea of the nature of temperature than he did before, in all probability he would lose what little idea he originally possessed. Next, in defining kinetic energy, we meet the statement that when stone falls actual work is done; it is, we believe, pretty generally considered that this is one case in which no work at all is done ; for there is no resistance overoome, and work has just been defined on the preceding page as the overcoming of esistance. After the preceding we are informed that "Heat is a sensible condition of matter," and we presume it follows that the hotter the matter the more sensible it becomes; if this be correct some writers would derive great benefit by taking up an abode as near the equator as possible.
The next definition certainly deserves a new paragraph, being as follows: The steam engine is the manifestation of the united impulses of countless numbers of invisible particles of steam." We are not going to spoil this by commenting on it ; we will only say that if, after reading this, any maker of steam engines goes to the trouble and expense of employing men, and buying and work ing up metals to make up his engines, when he need only light up a fire in a boiler, and let the particles of steam manifest them for him, he deserves to become bankrupt. In the rest of the chapter we find the unit of heat wrongly defined the increase of total heat explained as taking place according to a formula for the latent heat; a non-condensing engine with a back pressure of 6 lb . and various other equally interesting state ments.
Chapter II. goes the old round of Savery, Newcomen, \&c., to Watt, and we then consider the action of the slide valve ; here it is almost impossible to go wrong with so many sources to draw on but we meet an ingeniously arranged single-ported alve in which the stesm port as drawn is about twice the size of the exhaust ; and the sketches are here, as generally, very poorly executed, and plainly show a want of any practical knowledge of the engine; we also find that the author thinks that if the exhaust open before the end of the stroke, this indicates negative inside lap; if it be so, negative inside lap must be pretty general.
In Chapter III., on Boilers, we have the author's opinion that steel of from 33 to 40 tons tensile stress is best adapted for boilers; this hardly agrees with the opinion of the Admiralty, who are pretty extensive users of boiler steel, since they actually reject any steel above 30 tons ; perhaps after reading Dr. Evers' book they will alter this unwise course of procedure. Rivetting also supplies us with some peculiarities; a rough practical rule that diameter of rivet should equal thickness of plate being illustrated just below by a case of a $\frac{7}{8}$-in. rivet in $\frac{1}{2}$-in. plate, and a proof on the next page that 2 -in. rivets make a better joint in -in. plate than 1 -in. rivets do ; comment here would be superfluous. Among the preceding we find also the astounding statement that the strength of double rivetting is 98 per cent. of that of the plate.
The book contains fifteen chapters, and we have only now arrived at Chapter III., although only a selection of the erroneous and absurd statements with which the book is crammed has been given. t is plainly impossible to proceed in this manner all through, but we cannot help noticing one or two more gross errors. To illustrate the strength of

$\mathrm{W} \times \frac{l}{2}=$ depth or thickness \times tension.
By a refereuce in the book it appears that the suthor has written, or is about to write, a treatise on Applied Mechanics; judging by the specimen here given it should be decidedly amusing reading, f not very instructive.
The next point calling for notice is a most extraordinary use of the word "calorimeter." A calorimeter is generally understood to be an apparatus or measuring quantities of heat, but Dr. Evers appears to think it means an area; for we have the "calorimeter over the bridge," and "calorimeter through the tubes," dc., all given relative to the grate area of a boiler. Had the term appared once only, it would be natural to suppose it a printer's error, but finding it repeated no less than four times, we can only conclude that it is really put down as representing an area.
One more extract and we shall have finished. "If an engine be running at 30 miles an hour, and using a given quantity of steam per mile, and we double the speed, the resistance being constant, the power is double, and hence twice as much water is evaporated per mile;" the italics are ours; and we think that any one will agree that the author of such a statement as the preceding would be much better employed in getting some sound knowledge of mechanics for himself, than in writing books to nstruct others.
It may appear that it was hardly worth while devoting so much space to the examination of a book of this class. For an explanation of the reason for so doing we will return to the place whence we started, viz., the title-page. On that page we find the author described as the author of " Navigation and Nautical Astronomy," "Steam," "Trigonometry," "Mensuration," \&c.
Here then is the explanation of the utter worthessness of the book, and of many other books which have misled and still mislead hundreds of the younger and in some cases older members of the engineering profession. Written by men having a superficial knowledge of everything, and the almost invariable accompaniment of sound practical knowledge of nothing, they fill the minds of students with, in some cases, erroneous ideas, and in others with that half-knowledge which is perhaps even more dangerous. And the injurious effect does nut stop here; for the hardworking student finding himself landed in a quagmire, becomes disgusted, classes all teachers and professors alike as humbugs, and becomes thus often a stumbling-block in the path of the now happily increasing number of teachers, who understanding both theoretically and practically the science of engineering, are earnestly labouring to impart sound professional knowledge to the rising generaion of engineers.
It is then not only in itself but as representative of a class, that we condemn this book as one which can hardly, under any circumstances, be of use, but which is on the contrary almost certain to do reat harm to any student who attempts to obtain from it help in the study of the steam engine.

Year-Book of the Scientific and Learned Societies of Great Britain and Ireland. London: Charles Griffin and Co., Exeter-street, Strand. 1890.
Crosby Lockwood and Ciractor's Price Book: London : Crosby Lockwood and Co., 7, Stationers' Hall Court, Ludgate-hill. 1890. "[Price 4s.]
World Office, Gresham Press-buildings, Little Bridge street. 1890.
The Colonial Year Book for 1890. London: Sampson Low, Marston, Searle, and Rivington, Limited. The Stock Exchange Year-Book for 1890. By Thomas SkinNER. London: Cassell and Co., Limited. [Price 15s.] The Mining Manual for 1889-90. By WALTER R. SKINNER. London : 4, Birchin-lane, E.C. [Price 10s. Gd. net.] Jones. London : Lindley Jones and Co., 46, Watling. street, E.C.
In the "Year-Book of the Scientific and Learned ocieties" is given a short review of the history and organisation of the societies, of the conditions
of membership, and a list of the papers read by of membership, and a list of the papers read by
the members at the meetings last year, with such notes as are possible regarding the sources from which the papers may be had for perusal. It will thus be seen that the book is a valuable one for reference, and as it is compiled mostly from official sources it may be taken as accurate.

Lockword's Price-Book has undergone com plete revision, and the recent improved methods of construction have been taken into account in the compilation, electric lighting, ventilation, and sanitary appliances generally being fully dealt with Where the markets do not fluctuate to any grea extent this annual should form a good book of reference. The notes as to the sources of supply of many metals and minerals are worth studying. To all engaged in shipping, the Shipping YearBook is indispensable. It contains all that one should know about ports and harbours, dues and tariffs, foreign weights and measures, recent additions to shipping legislation, and the information is arranged in a convenient form for handy reference. Regarding all British colonies a great amount of interesting detail is given in "The Colonial YearBook." The different colonies are arranged alpha betically and of each information regarding the history, topography, mineral products, government, social life, dic., is given. Maps of all the colonies are included. An introductory article by Professor J. R. Seeley treats generally of the history of colonisation, while in an appendix questions affecting the whole of the colonies are discussed

The enormous number of new limited liability companies registered last year has made a very perceptiblechange on the bulk of theannual dealing with public companies. In the work entitled "The Stock Exchange Year-Book," there is given a record of all public companies, indicating their origin, the management, and the financial results. The work is too well known to the investing and speculating public to require further notice.

A publication of a kindred nature is "The Mining Manual," in which details are published of all mining companies, and in addition a directory of mining directors. A separate section is devoted to South African companies. Some ides of the scope of the book may be inferred from the fact that it deals with 1527 mining companies, the nominal capital totalling 157.6 millions, and the paid-up capital 116 millions sterling.
"The Mercantile Year-Book" contains a directory of exporters in the principal cities of the kingdom, and of the merchants and importers abroad with their representatives and buying agents, along with the tariff and import duties in the colonies.

BOOKS RECEIVED.
Handbuch für den Eisenschiffbau. Von Otto Schlicx. Mit Atlas. Leipzig: Arthur Felix. Report of the Royal Commission on the Mineral Resources of Ontario, and Mcasures for their Development.
Toronto: Warwick and Sons.

MODERN FRENCH ARTILLERY. No. XXIV.
The Forges et Chantiers Gun Factory-
Mountain and Field Guns-concluded. The three illustrations, Figs. 258 to 260 , show the form and construction of the limbers used for

Fig. 262.
Fig. 261.
percussion and combination fuzrs.
the mountain and field artillery of the type made by the Forges et Chantiers at Havre. For the
former the wheels are of the same pattern as for the gun carriage, and the ammunition boxes carried on the frame each contain ten rounds. there being two of such boxes. Figs. 258 and 259 (see page 721) show the manner in which the trail of the gun carriage is attached to the limber. That for the field guns shown in Fig. 258 carries three ammunition boxes, of which one contains twenty-four rounds, and the other two twelve rounds each; in a separate box there are carried spare parts, tools, \&c.
The ammunition for the various types of 75 -millimetre guns has been already described; in the head of the common shell is screwed a percussion fuze shown in Fig. 261, in which the cap containing the fulminate and firing charge is held in

mountain and field gun equipments in use in the British service, to afford some means of comparison scribed. The Canet system we have just described. There are five natures of carriages for
mountain guns in the service, the weights of which mountain guns in the servic
are shown in Table XXIII.
are shown in Table XXIII. these were succeeded by composite carriages of steel and wood. The present service types are of iron, and the carriage consists of two brackets, two transoms, a trail-piece, axle-tree, and wheels. The brackets are of plate iron cut away as far as possible for lightness and stiffened with angle iron along the upper side. The frames are connected and strengthened by the two transoms; they are and strengthened by the two transoms; they are
parallel as far as the second transom, after which

ELSWICK MOUNTAIN GUN AND CARRIAGE PACKED FOR TRANSPORT.
place by a soft metal pin passing through the body of the fuze; it is also kept from the striking point by a light spiral spring; when the shell strikes, the pin is sheared and the charge is thrown against the striking point. The shrapnel and case shot are fitted with a combined time and percussion fuze illustrated by Fig. 262, and the principle of which will be described on another occasion.

In Table XIX., page 726, are given particulars of the 75 -millimetre and 84 -millimetre mountain and field guns made at Havre on the Canet system by the Forges et Chantiers Company ; Tables XX. and XXI. show the compositions of standard mountain and field batteries.

Table XXI.-Composition of a Complete Mountain Battery.
Steel guns of 75 mm . and 16 calibres Carriages and steel wheels ${ }^{\text {Ammunition boxes (} 7 \text { rounds) }}$ Portable forge
Tools and accessories:.
Common shells ioaded percussion füres Shrapnel loaded compound fuzes .. Cartridges
Fuzes
Number of mules required \because
of mules required
Table XXII page 720, $\quad . . \quad . . \quad . . \quad \begin{array}{r}700 \\ 76\end{array}$

the ballistic characteristics of the mountain of

field artillery.
It may be interesting to give a few details of the they converge and are united in the trail-piece. To
the front of the frames are attached the brackets recessed on the under side and having angle irons rivetted round the recess to make bearings for the axle-tree. The latter is forged solid and has pins on each side 7 in . long to receive the wheels which are 2 ft .3 in . apart. The axle-tree is secured to the brackets by clips. Fig. 263 shows a general view of this carriage, and also the means for training it in elevation. This consists of a frame hung to a pin over the brackets and having attached to it \& bearing for a screw ; the top of the frame serves a bearing for a screw; the top of the frame serves gun rests, and by turning the screw in either direction the gun can be raised or lowered. The height from the ground to the centre of axles is 2 ft . $3 \frac{1}{2}$ in. The carriage can be carried by one man and the wheels by another. The Elswick mountain gun and carriage, which is largely used in the service, differs in many respects from the foregoing. Figs. 264 to 270 (page 723) illustrate it packed for transport. The gun shown is a 7 -pounder and is made so as to be easily separated into two parts and as easily reunited for service (Figs. 267 and 268). Two mules are required to carry the gun, which is packed on the saddle shown in Figs. 269 and 270. Three mules are required for the carriage and a fourth carries the ammunition boxes. The elevating gear of the Elswick field gun, Fig. 271, consists of a toothed quadrant pinned to the gun and brought into gear with a pinion mounted in the frame, and which is driven by a worm. The brake consists simply of a rope by which the wheels are lashed to the trail.

Figs. 272 to 274 (page 725) illustrate one of the service types of carriage for a 12 -pounder breechloading field gun (see "Official Treatise on Military Carriages"). The trail is trough-shaped in section and built of steel side plates .192 in. thick, stiffened by angles rivetted to their upper edge. At the bottom they are connected by a steel plate, and the trail is further strengthened by an eye forging at its lower end and by two transoms. The trunnion bracket

Fig. 275. Elevating gear for 12-pounder field GUN.
of the form shown is rivetted to bracket plates at the front of the trail and the trunnions are carried in this bracket and held by capping pieces. The upper side of the trail is partly covered by steel plates so as to form a box. The axle-tree is square and made of steel, and is connected with the bracket plates of the trail by steel stays, the rear ends of which are secured to the trail as shown. The elevating gear of this gun is shown in Fig. 275. It consists of the arc A made of steel and with twenty teeth. The elevating pinion B gears into this arc ; it is 3.9 in . in diameter and has fourteen teeth, within it is the friction cone C made of gunmetal and set up in place by a spring and two nuts. metal and set up in place by a spring and two nuts. twe wormwheel D is 3.87 in. in diameter and has twenty-two teeth. This is inclosed in a case G, and
the wormwheel and pinion are inounted on a the wormwheel and pinion are inounted on a
spindle 1 in . in diameter and running in the bearings E and F. The top of the arc A is pinned to the breech of the gun and can be moved up and down against a guide bolted to one of the transoms; the pinion gearing into it is loose on its spindle, but can be made fast by setting up the friction cone; when this is done, if the wormwheel be turned by means of a worm not shown in the drawing, the gun can be raised or lowered through any desired angle; the range of this gear is 16 deg . of elevation and 8 deg . of depression. The brake gear is shown in Figs. 273 and 274 (page 725). A band of steel is placed round the inner flange of each wheel, and the ends of each band are connected by a bolt and nut, so as to put on any tension that may be desired. Ratchet teeth are formed on the band, and when the gun is in action these are in gear with a steel pawl hung to a pin fitted in the front end of the tensile stay ; on the fame pin is a gun-metal bracket in which is a slid-

FIELD AND MOUNTAIN GUNS.

Fig. 260. Canet field gun nhowing training gear and brake.

Fig. 263. 7-pounder mountain gun and carriage, british service patibrn.

Fig. 271. 12-pounder elswick field gun and carriage.

FIELD AND MOUNTAIN GUNS.

12-pounder field gun ani carriagr, brtish service,
ing stud of gun-metal, which when the carriage is in action, is pressed by a spring against the pawl which is thus held in gear with the teeth on the brake band. The arrangement is such that the wheel cannot turn during recoil, but is free to reWheel cannot turn during recoil, but is free to re-
volve in running up. The pawl can be released at will by drawing on a cord attached to the sliding stud in the bracket. To enable the brake to be used in travelling without releasing the pawl, a lever is hung near the driver's seat, by depressing which the lower end of the lever can be made to engage in the teeth of the brake band and then skid the wheel.
Fig. 276 (page 723) illustrates a 12 -pounder breechloading field gun and carriage of a pattern designed at Elswick, and adopted as the arm for the Royal Horse and field batteries. The gun is wholly of steel, and consists of a barrel hooped at the breech end, the material being distributed so as to give the maximum strength for the least weight. The breech mechanism is exactly the same in principle as in the larger Elswick guns, but somewhat simplified. The gun is vented radially from the top, and in the middle of the chamber, by a removable steel vent, so that when it is rendered unserviceable another can be inserted immediately and without the aid of a skilled artificer. With the copper vents fitted to the older patterns of field guns, the insertion of a new vent was an operation requiring very great care and considerable skill, often taking two or three days to complete, besides which a number of the necessary tools were special and were kept at certain stations only. The carriage is in general appearance similar to the ordinary type of field carriages, but it has many distinct characteristics. It is formed of two steel cheeks flanged inwards for strength, connected by five diaphragms of steel. This rests on a forged steel axle-tree, being kept in position by bearings, and further connected by two round tempered stoel stays fitted at the centre with a strong steel spring to give elasticity to the carriage. An automatic brake to check recoil is fitted to each side, and acts

TABLE XIX.—GENERAL PARTICULARS OF CANET MOUNTAIN AND FIELD GUNS ; FORGES ET CHANTIERS DE LA MEDITERRANEE.

table XXif.-Pabticulars of Mountain and Firld Canet Guns, 75 ma. (2.95 in.).

12-CENTIMETRE SIEGE GUN AND CARRIAGE; CANET SYSTEM.

The discs are of chilled iron, the running disc being on a horizontal spindle. Mr. Robert Graham's mill (Carlisle) is fitted with Cumberland stones 2 ft .6 in . in diameter, the spindle being horizontal
Messrs. E. F. Turner, of Ipswich, bring their experience as milling engineers to bear on the subject of farmers' mills, and consequently their apparatus does not conform to any of the usual types. It is illustrated on page 745. Instead of following the old idea of grinding between a fixed and revolving surface, a plan which had its rise before the dawn of history, they supply a cheap roller mill consisting of two finely serrated revolving rolls, running at differential speeds of about 7 to 2 . Before reaching these, the grain passes through a pair of nearly plain rolls in which it is cracked or bruised. If this is all it requires it can be diverted into the delivery spout at once. Both sets of rolls can be accurately adjusted for distance, and both are provided with springs to allow them to move back to pass hard objects. The capacity of the mill is 60 bushels of maize, ground into flour, per hour. Both sets of rolls are driven from the same pulley through spur gearing.

Mr. W. H. Coward, of Bath, entered a grist mill on the same principle as his disintegrator, which is described on page 747.

Enaines.

Apart from the engines submitted for trial, there is really nothing whatever amongst the motors exhibited at Plymouth which calls for detailed notice. All the leading makers of agricultural engines, such as Messrs. Clayton and Shuttleworth, Messrs. Marshall, Sons, and Co., Messrs. Ransomes, Sims, and Jefferies, Messrs. Ruston, Proctor, and Co., Messrs. Robey and Co., Messrs. R. Hornsby and Sons, Messrs, Garrett and Sons, \&c., are represented,
but at none of their stands did we see a single the three valves-gas, air, and exhaust-are all novelty in steam engine construction. Messrs. worked from one lay shaft. A pendulum governor John Fowler and Co. and Messrs. Aveling and is used in combination with a hit-and-miss arrangePorter occupy their usual positions facing the ment. In one of the engines the governor is put entrance gates, but neither of them show any back every stroke by a projection on the exhaust novelty in the way of steam ploughing engines valve arm, and in this way all chance of its sticking or traction engines. In fact, the only unusual and giving too much gas is avoided. The engine object at Messrs. Fowler's stand is unusual not for presents a very neat appearance. Messrs. Crosslej its novelty but for a contrary reason, it being a Brothers, Limited, Manchester, show a new design steam ploughing engine of the double-drum type, of a 2 horse-power engine, in which all the valven a class of engine which has not been represented are on one side, allowing the engine to be placed at a Royal Agricultural Show for many years past. close to a wall.
Messrs. Charles Burrell and Sons, Limited, show a couple of traction engines of which one is a compound, having the two cylinders placed one above the other (the two piston-rods being attached to a single crosshead), a type which they introduced last year. This engine, which has cylinders respectively $6 \frac{1}{2} \mathrm{in}$. and $10 \frac{3}{4} \mathrm{in}$. in diameter with 12 in . stroke, is spring mounted on the system which we illustrated on page 740 of our last issue, and it is noticeable for its very moderate width, its measurement over all being only 7 ft .2 in ., although its wheels have 18 -in. tyres.

It is gratifying to notice that although at present our leading agricultural engineers are too busy to trouble themselves with the introduction of new types, they are certainly not neglecting the peryear brings evidence of improvements in machine work and in the design and construction of those minor details which have so large an influence on the production of really good engines at a moderate cost.

Among the gas engines we noticed that the Forward" engine of Messrs. T. B. Barker and Co., of Birmingham, has been greatly modified. It follows the regular Otto cycle, and is very neatly designed. The ignition is effected by a hot tube,

IMPLEMENTS.

For the use of small farmers Messrs. Davey, Sleep, Harris, and Co., of the Excelsior Plough Works, Plymouth, show a combined charlock cleaner and horserake. The cleaner consists of the usual serrated knife with a rotating brush above it. The knife cuts off and drags out the weeds, while the brush clears them off the blade and prevents it choking. The whole is mounted on a horserake and can be easily removed when not required. On the same stand is a horserake which has no spring in the locking motion ; in place of this the levers are so arranged that when the rake is at work they stand in the same straight line, and offer a firm abutment to the pressure tending to lift the rake. A novel kind of cart is also exhibited. It has a leg or support at the forward end just behind the shafts; this support ends in a slipper foot, and is mounted on a screw coupled by a chain to a handwheel. When the cart is about to descend a hill the screw is turned until the foot rests on the road; this acts as a brake, and also takes the weight off the horse's back.
A very promising improvement in harvesters and Cury, Cury, Cornwall. It consists of a rotating conical

MODERN FRENCH ARTILLERY; SIEGE AND GARRISON GUNS.
CONSTRUCTED BY THE FORGES ET CHANTIERS DE LA MEDITERRANÉE.
(For Description, see Page 751.)

Fig. 287. 12-centimetre siege aun and carriage.

Fig. 288. 15-uentimetre siege gun on travelling carriage and hydratlic beake.
coller, corrugated lengthwise, and mounted on the
off side of the machine. Its use is to disentangle laid or twisted crops. Ordinarily a part of the crop which is cut is entangled with the standing corn and accumulates on the side of the machine in a way which is inconvenient and dangerous. But with this appliance the cut stalks are drawn out of the rest of the crop and are passed on to the platform while the remainder then slides off, ready to be cut on the next journey.
Amongst the implements at the stand of Messrs. R. Hornsby and Co., Limited, is a new pattern of light reaper, named by the makers "Hornsby No. 20." One of the chief features in this reaper is that the slow motion required for the rakes is obtained direct from a chain-wheel on the main axle instead of being derived from the high-speed motion required for the knives, as is the usual arrangement. The arrangements for controlling the gathering motion of the rakes and other adjustments are also exceedingly well worked out. Close by, also, Messrs. Hornsby show one of their new "Hornsby-Hoosier" drills, this being a very light drill of the American Hoosier type. The details of this drill are very ingeniously designed. No change-wheels are employed to vary the speed of the spindle carrying the feed rolls, but the amount of feed is regulated by varying the length of the rolls utilised. The coulters can be used either in line or zig-zagged, and their points are made so that they tend to draw down into the ground and so do not require to be weighted. Each coulter also is so made that it can yield if it strikes a large stone or other obstacle, at once resuming its position when the obstacle is passed. The whole machine is exceedingly light and yet very stiff and strong. Another new implement at Messrs. Hornsby's stand is a combined pulper and slicer. In this machine the spindle carries a single disc fitted on one side with slicing cutters, and on the other with teeth for pulping. This disc is situated between two hoppers, and the spindle carrying it is capable of being moved endwise through a space of some 3 in . so as to give a free space on either side of the disc. When moved into one position the slicing side of the disc is brought near one of the hoppers, and clearance for the cut roots to fall away is lef on the other side, while when shifted into its other other extreme position the pulping side of the disc is brought against the hopper which is used for pulping, and a free space for the pulped material to et away is provided on the other side. Two "strawsonisers" are also shown at Messrs. Hornsby's stand. The makers have completely metamorphised the construction of this apparatus ince it made its appearance at Windsor last year and have reduced it to a very simple and practical form. As our readers are aware, this apparatus dis tributes solid materials in the form of powder or fine grains, or liquid manure, \&c., by the action of air jets. The supply of air for working the jets is given by a small Sturtevant fan driven by gearing from the axle of the machine, and the details of the arrangement for adjusting the amount of material delivered, \&c., are exceedingly well worked out.
To load hay from a field into a wagon, Messrs. Lankester and Co., of 110, South wark-street, Lon don, show the Keystone hay loader, which is of American origin. It runs on a pair of wheels and can be attached to the rear of a wagon which then runs down the windrow and automatically transfers the hay or loose grain to the wagon. The apparatus consists of a cylinder carrying forks, like a tedder, and driven from the axle. These forks are mounted on rods which have levers at the end running over a cam path. By the action of the cam the forks clear their load as they come to the top of the circle in which they revolve, and drop it on to a long travelling apron of light construction, which carries the hay upwards, and finally drops it into the wagon.
A number of distributors for various purposes are shown by Mr. G. Greenfield, Eakring, Newark, One of these is fixed to the back of a cart and driven by a chain from a wheel fixed to the nave of the travelling wheel. The others are self-contained. Messrs. W. H. Nicholson and Sons, Limited, of Newark, show a new form of horserake with a very simple locking motion, consisting of a catch which locks the lever for a second when it is dropped, and then rebounds and leaves it free for the next operation. The details of this rake are exceedingly well worked out.

Messrs. Adams and Co., of Northampton, show a steerage drill worked by a handwheel behind.

By means of shafts and bevel wheels this wheel is connected to the fore carriage. It is also coupled o a long drum which lifts all the coulters at the end of a row.

Miscellaneous.

To provide a cheap platform weighing machine or farmers, the Western Counties Agricultural Co-operative Association, Plymouth, have taken the agency for the Osgood United States standard scales. The platform and pit are built of timber, and the main beams are of the same material. To allow or the variation of the timber the knife-edges bear upon discs which rest on other discs with convex surfaces, and these again repose upon rubber cushions, so that the parts may always easily adjust themselves to one another. It is claimed that perfect accuracy can be obtained with these weighing machines, while their cost is exceedingly moderate. Of weighing machines of the ordinary type Messrs. W. and 'I'. Avery, of Birmingham, have a large collection. They show one combined with a cart, and another with a wagon, so arranged that the exact load can be measured without disturbing the goods. By means of a lever the weight is transferred from the axle to the machine, there eing no load on the knife-edges at other times. They also show a weighing machine combined with a jib crane. The pulley at the end of the jib is mounted on a lever which is connected at its other end by a rod to a steelyard on the framing. When the load is lifted it can be held suspended for a moment and then weighed.
A machine for washing hops is shown by Mr. William Lambert, Staplehurst, Kent. It consists of a tank mounted on wheels and fitted with shafts or horses, The pumps are geared to the wheels, and five nozzles are provided at each side for the jets. An automatic arrangement is provided by which the liquor is discharged up the poles, and is mmediately shut off between the hills, the pumps continuing working all the time. The machine can be changed in two or three minutes to act as a fire engine.
Messrs. Eddy and Sons, Kennford Iron Works, ear Exeter, show a very convenient earth scoop or contractors' use. The scoop is drawn along by the horse until it is full ; the man who is guiding t at the handles then tilts it forward on its cutting edge and puts his foot on a lever. This draws out wo catches and allows two square rods to fall, each carrying a wheel at the lower end. The scoop is then run away on its wheels to the place where it is to be tipped. The man then raises the handles till the cutting edge catches the ground, when the scoop urns completely over, discharging its load.
The trials of the disintegrators showed very clearly the necessity for the magnetic separator of Mr. Harrison Carter. This consists of an inclined shaking shoot down which the materia, such as bones, slides to a rotating drum. This drum contains a large number of electro-magnets energised by a current from a small dynamo. The poles project above the surface of the drum, and catch any pieces of iron that may pass over them. By means of a commutator the current is cut off from the magnets when they are at the under side of the drum, and they drop their load into a hopper eparate from the bones, which fall forward into a heap. If this machine had been used in the trials it would have averted an accident which occurred.
The principle of the self-acting flushing tank is applied by Mr. J. Best, of 23, Old Town-street, Plymouth, to the hydraulic ram, in situations where the stream is so small, or at times becomes so small, hat it will not close the valve and set the ram in action. At any convenient height above the ram here is fixed a tank, and the stream is delivered nto it. It here accumulates until the tank is nearly ull, when it lifts a float ; this float is connected to a hollow tipping lever partly filled with mercury. As oon as this lever is raised past the centre the mercury rushes to the other end, lifting the lever and opening a valve, which allows the contents of the tank to rush down a pipe to the hydraulic ram, and work it until the supply is exhausted. The valve is then closed, and the water commences to accumulate
afresh. The same exhibitor has some handy little afresh. The same exhibitor has some handy little
water wheels and pumps for supplying water to country houses.

Dolberg's narrow gauge railway for farm purposes s shown by Mr. W. A. Stone, of Prague, Austria. In connection with it is a portable log crane, for getting timber on to the trucks. This consists of
of arch. They are joined by a pin at the top, and there are several holes in each to allow of adjustment. The lifting chains are worked by levers and pawls. At each stroke of the lever the chain is drawn forward over a pulley the length of a link, and is then held by a second pawl. The foot of the bar is of sufficient length to prevent it sinking into the ground, and will adjust itself to any inclination.

Dairy.

As usual, Messrs. T. Bradford and Co., of High Holborn, London, have a large supply of dairy machinery. In addition to their many well-known churns they show a new design called the "post diaphragm." It consists of a vessel, nearly hexa gonal in vertical cross-section, rotating on a hori zontal spindle. Dividing it into two parts longitu dinally is a grating of wooden bars set at variou angles. The cream is deflected, as the churn is rotated, at each angle of the hexagon, and then is driven through the "post diaphragm," the result being a great agitation and rapid production of the butter. For people who like to indulge in the luxury of freshly - made butter for breakfast the " morning" churn is provided. It is in tended for the production of small quantities of butter, and consists of a barrel-shaped glass vessel, graduated in pints. It is fixed in a frame by which it can be turned end over end. The churn is specially suitable for a lady who takes an interest in her dairy, and likes occasionally to churn for herself. To soparate the butter from the butter-milk, Messrs. Bradford show a new worker consisting of a corrugated roller working over a table. The novelty of the arrangement consists in the corrugations running spirally, instead of longi tudinally, and the table being rounded. By these alterations the butter-milk is able to run away more freely, and thus the end is gained without working the butter too much. Two sizes of this machine are shown, one for hand and one for power. When the butter is cleansed it is made up into half-pounds by means of a dairy table fitted with a die. The top of the die is closed by a lid worked by hand, and the bottom is forced up by a foot lever, thus render ing the butter very solid. The arrangement is very similar to a brick press.
A very convenient weighing machine for milksellers is shown by Messrs. Freeth and Pocock, of Wandsworth-road, Vauxhall, London. There is a loose platform on the machine, and this is connected to a tipping hoist by which the railway churn can be raised and its contents discharged into the refrigerator. The machine is one of Avery's self-registering type. The can is placed on it and the weight stamped on the ticket ; the milk is the emptied and the can returned for the tare to be taken and impressed on the ticket. There is thus no chance of mistakes occurring, while the operation is very expeditious.
Visitors to the Royal Show always find an attraction in the capital display of the Dairy Supply Company, Limited, of Museum-street, London This year there is shown a delaiteuse of very large size. This is merely a centrifugal machine for re moving the milk from newly churned butter. It consists of a perforated cage standing on a vertica spindle running at 550 revolutions per minute. The butter is inclosed in a bag and placed in this machine, until all the butter-milk is expelled. After this is done it needs very little working to mass the grains together, and consequently they are not rendered greasy. The quality of butter is rapidly deteriorated by friction. In the working dairy the same firm show De Laval's instantaneous butter-maker. The object aimed at in this apparatus is to conduct the two operation of separating the cream from the milk and of churn ing the cream each at the appropriate temperature The former is done at 75 deg. to 80 deg. Fahr., and the latter at 50 deg . to 55 deg. The fresh milk runs over a heater into a Laval separator of the usual type ; the skim milk flows away, while the cream trickles over a small refrigerator, supplied with cold water, into a tiny churn fixed to the frame of the apparatus, and driven at 3000 revolu tions per minute. This is a small horizontal cylin der in which revolves a beater or whisk, and in it passage through it the cream becomes converted into butter and butter-milk, or, as the Scandina vians aptly call it, "churn milk."
In the interval since the Windsor Show, the direct butter extractor shown by the Aylesbury Dairy Company, of Bayswater, London, has been very considerably moditied, and it is now offered
as a practicable machine for dividing new milk into skim milk and butter at one operation. It consists of a separator revolving at 6000 revolutions per minute in the usual way. The skim milk accumulates at the periphery und the cream masses itself in a vertical annular layer inside it. In the centre of the vessel is an inner openrangement can be pressed into the wall of cream around the inside of the compartment, when it revolves at the same peripheral speed. The following is a summary of the explanation of its action given by the exhibitors. Cream consists of butter globules mixed with a small quantity of skim milk. If the last traces of milk be removed the globules will coalesce and form perfectly pure butter. The bars of the wheel keep parting the cream, and thus enable the skim milk that was in the cream to escape therefrom, leaving only pure butter globules, which coalesce somewhat together, and escape from the drum by a spout provided for them.
The same firm shuw two new small hand separators this year. They are of simpler construction than their larger machines, the sharp spouts which were used for skimming out the liquids being abandoned, and the outflow taking place through appropriately placed passages. They also show a whirling apparatus capable of being fixed in a separator and designed to receive 140 test tubes for testing the quality of milk. This size is, of course only suited for very large dealers who obtain milk from many sources, and wish to guard themselves against receiving fluid which has already undergone a partial extraction.

MODERN FRENOH ARTILLERY

No. XXV.
Forges et Chantiers de la MediterraneeSirge and Garrison Guns.
The siege and garrison guns made on the Canet system at the works of the Forges et Chantiers de la Mediterranée, are classified into a series of the following eight calibres :

	me	\cdots	=	3.54 in.
10	"	\ldots	\ldots	...	=	3.94 "
12	",	=	4.72 ,
15	"	$=$	5.90 "
19	"	$=$	7.47 ",
22	"	-	8.66 ",
24	"	\cdots	=	9.45 "
27				...	=	10.63

Each of the foregoing calibres is divided into two types, short and long ; the former is intended to give a initial velocity of at least 1312 ft ., and the latter
opped compartment, slightly conical, the mouth those of the French regulation pattern; indeed, as 1700 ft., and is a very formidable type of artillery. being the smallest part. The cream gradually will be seen from the particulars containod in Table It is provided with a simple form of breech accumulates in this inner vessel, in which is XXIV., M. Canet has attained with them velocities mechanism (Figs. 281 and 282) with the ordinary a light paddle-wheel or cage. This wheel runs of nearly 2000 ft . per second, while the material em- plastic obturator and a safety apparatus, consisting loose on its spindle and by an eccentric ar- ployed has not suffered from the heaviest strain to of a bolt on which is mounted a shield covering
muzale a wrought-iron plate of $2.5 \mathrm{in} .$, and has a also clained that the gun is free to fall back through range of 7400 metres, up to the long $10.63-\mathrm{in}$. gun a larger angle than is possible with an oscillating that can pierce 17 in . of wrought iron at the muzzle, brake cylinder, the rod of which is attached to the and has a range of more than seven miles. A large balanced frame.
number of experiments have been carried out with The Canet 12 -centimetre (4.72 in.) siege gun, e Canet guns of these types, and they have been which is a very convenient calibre, throws a pro-- ound to give initial velocities much higher than jectile weighing 39.7 lb . With an initial velocity of

bREECHLOADING MECHANISM ; SIEGR GUNS.

15-CENTIMETRE SIEGE GUN.
which they have been subjected- $\mathbf{2 5 , 6 0 0} \mathrm{lb}$. per the vent. This opening remains protected during square inch.
These guns are mounted either on wheeled carriages or on disappearing mountings, or for the hearier natures, on the various patterns of garrison carriages. The eclipse or disappearing mountings have many advantages to recommend them; they are easily worked and offer a great degree of security to the men engaged in working, either security to the men engaged in working, either
behind a parapet or in a well. The special arrangebehind a parapet or in a well. The special arrange-
ment of brake adopted by M. Canet for this class of ment of brake adopted by M. Canet for this class of
mounting, to which special reference will be made
later, possess, it is claimed, great compactness, while later, possess, it is claimed, great compactness, while with the working of the breech mechanism. the brake cylinders being placed horizontally, the frame consisting of two steel plates solidly braced strains set up can be more easily controlled, and together (see Figs. 283 to 285); between the

TABLE XXV.-PRINCIPAL PARTICULARS OF FIELD AND GARRISON GUNS (CANET SYSTEM); FORGES ET CHANTIERS DE LA MEDITERRANEE.

Type of Gun.	Calibre.		Total Length.		Length of Bore.		Diameter of Chamber.		Length of Rifled Porti. n .				Weight of Gun.		Weight of Shell.		Weight of Charge.		$\begin{aligned} & \text { Muzzle } \\ & \text { Velocity. } \end{aligned}$		Muzzle Energy.		Perforation in Wrought Iron.		MaximumRange.	
Field and garrison gun, short type	$\mathrm{in}_{3.58}$	$\underset{\mathbf{9 0}}{\mathbf{n m}_{2}}$	${ }_{63.7}^{\mathrm{n} .7}$	$\left\|\operatorname{mmm}_{1620}\right\|$	$\operatorname{in}_{5 \times 57}$	mm_{1386}	$\begin{aligned} & \text { inn } \\ & 3.70 \end{aligned}$		$\operatorname{in.}_{89.4}$	$\mathbf{m m}_{\mathbf{1 0 0 0}}$	28		lb. 793.7	$\left\|\begin{array}{\|c} \text { kilos } \\ 360 \end{array}\right\|$	$\begin{aligned} & \text { 16. } \\ & \text { 16.75 } \end{aligned}$	$\underset{\substack{\text { kilcs. } \\ 7.6}}{ }$	${ }_{\text {2.6. }}^{\text {lb. }}$	kilos. 1.2	1818	$\mathrm{m}_{400} .$	ft.tons	$\begin{aligned} & \text { 1. tons } \\ & 61.99 \end{aligned}$	$\operatorname{in}_{8.52}$	$\underset{6.4}{\mathrm{~cm}}$	$\begin{aligned} & \text { yards } \\ & 8,087 \end{aligned}$	m. 7,395
Ditto, long type ..	3.54	90	92.1		88.92	2108	3.70	94	68.4	40	28		1328.8	600	16.75	7.6	4.4	2.0	1708	520	333.8	104.76	3.68	. 3	9,963	9,110
Ditto, short " ..	3.94	100	70.8	800	00.63	1540	4.00	104	43.6	1110	30		1060.2	480	23.15	10.5	3.53	1.6	1818	400	976.4	85.62	287	7.3	8,476	7,750
Ditto, long "	3.94	1001	108.8	2000	98.14	2340	4.00	104	75.9	1930	30		1807.8	820	23.15	10.5	5.95	2.7	1706	520	467.3	144.74	4.28	10.9	10,689	9,660
Ditto, short " ..	4.78	120	85.0	2160	73.47	1866	4.87	124	52.3	1330	36	\%	1873.9	850	89.68	18.0	5.85	2.7	1818	400	478.85	146.78	3.78	9.6	8,787	8,015
Ditto, long " ..	4.78	1201	1888	3120	111.87	2826	487	124	92.34	2345	38	-	3008.4	1,400	39.68	18.0	10.36	4.7	1708	520	801.0	248.12	5.51	14.0	11,058	10,110
Ditto, short ",	5.90	1501	106.3	2700	98.61	2352	6.10	155	65.3	1680	46	∞	3687.6	1,650	77.16	35.0	11.68	6.3	1818	400	981.5	285.42	5.15	13.1	9,04	8,270
Ditto, long ",	5.90	1501	153.5	3900	189.85	3552	6.10	155	118.7	2880		E	0062.7	2,750	77.16	35.0	19.84	9.0	1708	520	1557.6	482.46	7.55	19.2	11,688	10,550
Ditto, short "	7.47	100,	134.6	3420	115.20	2026	7.67	195	83.0	2110	58		7385.4	3,850	1548	70	23.15	10.5	1318	400	1843.8	570.96	7.20	18.3	9,389	8,580
Ditto, long ",	7.47	1801	4.5	4040	175.0	4446	7.67	195	144.5	3670	58	-	18,125	5,500	154.3	70	38.68	18.0	1708	520	15.1	964.94	10.47	28.6	12,040	11,010
Ditto, short "	8.68	2201	155.9	3080	188.4	3388	8.89	228	98.0	2440			11,484	5,200	848.5	110	38.38	16.5	1312	400	2898.7	897.23	8.88	22.7	0,848	0,000
Ditto, long " ..	8.66	220	285.9	5720	208.7	5148	8.89	226	167.3	4250	68		18,730	8,500	248.5	110	68.88	29.0	1703	520	4896.0	1516.3	13.03	33.1	12,839	11,740
Ditto, short ",	0.45	240,	170.1	4320	185.5	3608	9.78	247	105.1	2670	72		14,905	8,760	308.6	140	40.30	21.0	1818	400	3688.4	1141.9	10.0	25.4	10,029	9,170
Ditto, long , ..	9.45		206.3	6240	281.1	5616	9.78	247	182.3	630	72		24,918	11,300	308.6	140	79.37	38.0	1708	520	0880.0	1829.8	14.57	37.0	13,156	12,030
Ditto, short "	10.63	2701	191.4	4860	163.7	4158	10.94	278	118.1	000	82		81,164	9,620,	44.9	, 200	68.14	30.0	1818	400	5888.5	1631.3	11.85	30.1	10,389	9,495
Ditto, long	10.63	2701	191.4	7020	248.8	6318	10.94	278	205.8		82		35,881	16,140	410.9	200	114.64	520	1708	520	8981.6	2763.3	17.64	43.8	13,048	12,755

a velocity of 1700 ft . per second to the projectiles. |there is an absence of the shock which accompanies axle and the connecting pieces mounted on the The complete series thus comprises sixteen types the arrangement, in which the brake piston is frame, a heavy rubber sheathing is placed, intended of guns, the larger ones of very considerable power attached to the balanced frame of the mounting. to reduce the shock of recoil. The frame is also and range, and among them may be selected No central well is required for the reception of the provided with shoe brakes, a, Fig. 283, to limit weapons adapted for almost any class of land service. brake cylinder, and the dimensions of the base- the recoil, and in such cases where it is desired to. Thus these guns vary in efficiency from the short plate are reduced, so that the pit in which the gun reduce it to a minimum a hydraulic brake is intronature of 3.54 in . which can penetrate at the is placed can be made of smaller dimensions. It is duced. In front the carriage rests upon a bedplate

COMBINED TRACTION ENGINE AND ROAD ROLLER.

CONSTRUCTED BY MESSRS. WALLIS AND STEEVENS, ENGINEERS, BASINGSTOKE.
(For Description, see Page 754.)

b, Fig. 283, to the forward part of which is con nected a brake cylinder whose piston-rod is coupled with the end of the frame; after firing, the carriage mounts two inclined steel guides and afterwards falls back again into firing position by gravity. The discharge orifice of the brake is variable and maintains a very regular action during the recoil. This is the arrangenent proposed by M. Canet some years since as the French standard type for the 6.10 -in French siege guns. Training the gun for elevation. is effected by means of a differential gear to be described presently, and which is used largely in the Canet carriages. Training for direction is effected by means of levers, the carriage being free to revolve on inclined planes around a pivo provided for the purpose; a platform is provided at the rear of the carriage for the man training the gun. This weapon is of a light and simple type, while the form of mounting adopted gives it great stability. The rapidity of fire is much increased by the fact of the gun coming back automatically into firing position, thus saving all the more or less serious manipulations necessary when mountings for this purpose are not provided. This great ease in handling is one of the special advantages of the arrangement illustrated, and which cannot fail to be appreciated by every one who has had to train a siege gun mounted on the older types of carriage.
The construction of these guns is illustrated in Fig. 286, where it will be seen to comprise one long tube extending from end to end, the breech being enlarged for the powder chamber and the breech seating; over this is shrunk a jacket extending to the trunnion ring, and in front are two thinner taper rings. The arrangement for training for elevation is shown in Fig. 283; it consists of a straight rack A attached to a ring that passes round the gun and gears into a pinion that is turned through the handwheel C, which is fast on the same shaft; two guide rollers of gun-metal press against the back of the rack and keep it in position. The handwheel does not act direct on the pinion, but through the medium of a differential gearing, which is arranged in the following fixed an excentric that turns inside a disc, and is
separated from it by means of small friction wheels arranged around its periphery. Around the outer side of the disc are cut nineteen teeth; this disc is placed within a second disc, but eccentrically to it ; on the periphery of this disc are cut twenty teeth, and upon its spindle the pinion gearing into the rack is attached. The outer disc, which is held in its place by studs, does not turn, but has simply sufficient movement to give one-twenticth of a revolution to the inner disc for each complete revolution of the handwheel.
The hydraulic brake which is attached to this gun is illustrated in the various figures; it consists of the cylinder A^{1}, in which moves a piston B. The rod of this piston is hollow, and within it passes a rod secured to the bottom of the cylinder his rod is made of a variable cruss section. The head of the piston is made with four inclined openings, which are in communication with a central opening made in the opposite side of the piston. Between the two faces is interposed an annular valve formed with four lateral openings and with four inclined grooves ; this valve is held down on its seat by a coiled spring. Inclined grooves made in the head of the fixed rod of variable section effect communication between the inner space of the piston and the body of the pump. When recoil takes place the valve is lifted and allows the liquid to flow freely through the openings in the head of the piston. The variations in the area of the central opening are assured by the variations in the section of the fixed rod, which are so calculated as to produce a constant pressure through the cylinder throughout the recoil. As soon as the recoil is terminated, the valve in the piston closes, and the fluid can only pass through the other side by the narrow openings in the piston and the grooves; this gradual flow brings the gun back into firing position as slowly as may be desired, the rate of return being regulated by altering the size of the openings. The air inclosed in the cylinder expands, and is compressed according to the position of the fixed rod of varying section, and in this way an air cushion is provided to absorb shocks. he illustrations show that the cylinder is attached to a pivot in the bedplate placed between the
wheels, while the piston rod is secured to the under side of the carriage. To insure the return of the gun to firing position, two shoe wedges a, Fig. 283, are placed at the rear in contact with the wheels; they are connected by two crosspieces to which they are jointed, the forward one F is mounted on the pivot of a platform b, around which it can turn; in the other one G is a recess in which the brake cylinder can rest. By this in which the brake cylinder can rest. By this the movement of the carriage when the gun is elevated, and they are always parallel to its axis. We annex particulars of the projectiles for the 12 centimetre gun; those used with the 15 -centimetre
Table XXIV.-Experiments with 12 cm . (4.75 in) Siege and Garrison Guns, Canet System, Model 1889, made in January and March, 1890 .

Weight of Shell.		Kind of Powder.	Weight of Charge.		Muzzle Velocity.		Prewure.	
lb.	kilos.		lb.	kilos.	ft.	m.	tons per sq. in.	kilos. per
41.88	19.	C2 brown	6.614	3.	1286	396	4.73	45
41.88	10.		7.716	3.500	1418	432	7.68	1190
41.23	18.700	"	8.818	4.	1548	470	10.69	1590
39.68	18.	"	10.14	4.600	1678	511	13.84	2180
40.78	18.500	C2 black	8.818	4.	1411	430	13.97	2200
40.34	18.300	C2 brown	8.818	4.	1589	466	10.63	1675
40.34	18.300		10.14	4.600	1670	509	13.59	2140
40.56	18.400	$\underset{155,1889}{\substack{\text { BN. sample }}}$	3.307	1.500	1087	316	1.488	235
40.34	18.300		4.409	2.	1309	399	3.016	475
40.34	18.300	"	5.512	2.500	1588	487	6.35	1000
40.34	18.300	"	5.518	2.500	1581	482	6.159	970
40.34	18.300	"	6.063	2.750	1690	518	7.48	1170
40.34	18.300		6.063	2.750	1708	520	7.48	1170
40.56	18.400		6.614	3.	1828	557	0.50	1510
40.34	18.300		6.614	3.	1818	554	10.35	1630
40.58	18.400		7.165	3.250	1945	593	11.94	170
40.34	18.300		7.185	3.250	1918	583	10.35	1630
40.12	18.200		7.185	3.250	1948	582	11.75	1850

bore weigh 77 lb. , and, with a maximum powder 1700 ft . The length of the shell varies from 2 to 2.8

TRIPLE-EXPANSION ENGINES OF THE S.S. "MARIPOSA."
CONSTRUCTED BY MESSRS. BLACKWOOD AND GORDON, ENGINEERS, PORT.GLASGOW.

calibres. The ballistical data of the various types \mid Fig. 288 is a similar view of the $\mathbf{1 5}$-centimetre gun. of siege and garrison guns made by the Forges et The trunnion bearings on the frames for supporting Chantiers at Havre, will be given in our next the gun during transport are shown in these views. article. Fig. 287 (page 749) conveys a good idea of Table XXIV. is the record of a series of experia 12 -centimetre siege gun mounted for firing, and ments made with a 12 -centimetre Canet siege gun
at Havre during the present year; Table XXV. contains general particulars of all the different types of Canet siege and garrison guns.

ENGINES OF THE S.S. "MARIPOSA."

We give this week a two-page engraving with other views on the present page, of the triple-expansion engines of the screw steamers Mariposa and Langosta, belong, having been constructed by Messrs.]lack wood and Gordon, of Port-Glasgow, to the order of Messers. J . and A. Allan, of Glasgow, and under the snperintenJ. and A. Alan, of Glasgow, and under the snperinten-
dence of their engineer, Mr. David Johnston, of Glasgow. dence of their engineer, Mr. David Johnston, of Glasgow.
The vessels are of the following dimensions; viz.: Length, 153 ft ; breadth, $28 \mathrm{ft}$. ; depth, 9 ft . 6 in . They are constructed to Class 100 Al at Lloyd's (coasting) and are capable of carrying 150 tons cargo on 8 ft . draught of water. The hatches are specially large and each steamer is fitted with two 24 tons steam cranes manufactured by Messrs. Napier Brothers, of cranes manafactured Altogether everything is arranged for the rapid handling of cargo, as Messrs. Allan intend using rapid handing of cargo, as Messrs. Allan intend using River Plate, which latter vessels, owing to their depth of draught, cannot come alongside the wharf.
It was essential to the purpose for which these small

MODERN FRENOH ARTILLERY.

 No. JII.For nearly four centuries the manufacture of ordnance in France was carried on exclusively in the arsenals of the Government, all private enterprise in this direction having been checked, while the purchase of war material from foreign countries was prohibited; and although after the conclusion of the Crimean War the French Government was conscious of its inability to keep a front place with other nations who were then making rapid progress in the art of heavy gun manufacture, it did not avail itself of the opportunities afforded by the Elswick firm, and by Krupp, of Essen, to supply itself with ordnance from abroad, which it could not manu facture at home. During the Franco-German War the rule was relaxed so far that field batteries were purchased from several foreign makers, while, as we have seen, at an earlier date, guns for trial had been obtained from Krupp. When the war of 1870 broke out, the metals then employed for making guns cast-iron and bronze-were prepared wholly in the Government establishments; the metallurgical works of Douai and of Bourges supplied the material for the land artillery, while those of Ruelle, Nevers, and St. Gervais, worked for the marine. After the conclusion of the war, French manufacturers were unable to produce steel suitable for heavy guns, and when, about 1873, the Government made naval ordnance of the so-called 1870 type, the French Admiralty purchased all the inner tubes from Messrs. Firth and Son, of Sheffield. But not only was private tion, from supplying the needs of the country so far as war material was concerned; it was further hampered and indeed stifled, by regulations that prohibited any French industrial from furnishing ordnance to foreign governments-a very superfluous prohibition considering that France at that time was far behind either England or Germany in the fabrication of guns. The result of this short-sighted policy made itself disastrously evident during the Franco-German War, and taught France 8 lesson by which she has very fully profited as the magnificent display of light and heary artillery in the pavilion of the Minister of War on the Esplanade des Invalides, proved last year. on the Esplanade des Invalides, pruved last year
Before the close of the Franco-German War, when Before the close of the Franco-German War, when
it had become only too evident that the Govern ment system had hopelessly broken down, engi neers and manufacturers had done their best to supply the deficiencies of the State arsenals by manufacturing war material as rapidly as possible but the time and opportunity had passed, and all their efforts were practically fruitless. After the conclusion of the war, the Government-in spite of experience - only partially relinquished its old experience - only partially relinquished its old
practice, though it went so far as to employ French practice, though it went so far as to employ French while it continued to keep the fabrication in its own hands
In 1872, M. Thiers conceived the idea of estab lishing in France a great central factory which should be to that country, what the works at Essen were to Germany ; such establishments already existed at Creusôt, as a steelmaking industry, and at St. Chamond, and special efforts were made to encourage these gigantic factories and to make of them powerful auxiliaries to the State arsenals. It was not, however, for several years that a sufficient inducement was given to private firms to devote time and money in establishing works for the manufacture of ordnance, or even for the specia manufacture of gun steel tempered in oil and annealed, or for armour-piercing projectiles ; but in August, 1885, a law was passed by which the pro duction of war material for foreign countries was sanctioned, and at last French industry was set free not only to prepare to render invaluable services to the country in the event of another war, but also to compete with England and Germany in the sale of guns to those powers that have the money to buy, and the necessity to possess, but which at the same time hare not the power to produce for themselves. We shall hope to show in following articles to what shall hope to show in following articles to what extent French manufacturers have profited by the privileges thus tardily afforded them; it will be bition has been removed, the country has made a marvellous progress, that it has been able to put into extensive practice the advanced views which
even in the early days of heavy artillery gave France a leading position so far as theory was concerned, and which were afterwards followed and improved upon by foreign makers. In the manufacture of the highest class of material omployed, she is excelled by no country in the world, and she is already a powerful competitor with England and with Germany in foreign markets, while -- until the necessary familiarity with certain French processes has been acquired by English manufacturers - we have been compelled to purchase large quantities of armourpiercing projectiles from Holtzer, Firminy, and other makers of special steel in the district of the Loire.
Cast iron still enters largely into the manufacture of French ordnance for coast defence, and types that were originated before or about 1870 have not yet passed out of service, though the patterns have, of course, become obsolete. Experience and theory have combined to recommend the continued use of such cheaply made guns for special purposes, and they do not differ very widely in their design from the earliest pattern of reinforced guns experimented with after the conclusion of the Crimean War, and which we have referred to in a revious article.
Modern French artillery may be said to date back
those just given, but in order to employ a heavier charge of slower powder, the chamber was onlarged. The 10 -centimetre steel guns manufactured in 1874 , were known as the 1870 model ; these in fact closely resembled the earlier type in their design, but the cast-iron body was replaced by steel, which, it is needless to say, was not of such quality as can now be made. A few years later, calibres and weights were increased, and the first 27,34 , and 42 centimetre guns were produced, on what was called the 1875 model, and subsequently others of greater length and of 37 -centimetre bore upon the so-called 1875-79 types. In and after 1878 this enlargement of the powder chamber was definitely adopted, and in the same year a new calibre, 6.29 in., was made. The use of slower burning powders and heavier charges was naturally followed by an increase in the length of the gun ; the 17 calibres of bore was extended to 25 calibres, and a number of such heavy pieces of artillery, of reinforced cast iron were made after 1870 ; at present only two such guns are in service; they are 12.60 in. bore, 25 calibres in length, and form a part of the defence of Toulon. Before 1879, the length had been again increased to 27 calibres, and artillery ranging from 13.39 in . (34 centimetres) to 16.54 in . 42 centimetres) were made of these proportions ; a considerable difficulty, however, was found in the

\%isid

Fig. 11. Cast-iron reinforced french aun ; type 1864 convertrd to 1868 model.
to 1868 , when cast-iron guns of 19,24 , and 27 centimetres ($7.47 \mathrm{in} ., 9.45$ in., and 10.63 in .) were made ; the type of this gun is shown in Fig. 11, where it will be seen that it consists of a cast-iron body reinforced behind the trunnions by two rows of narrow steel bands, the outer row being much thinner than the inner one; it was further strengthened by a steel lining forced into the body of the gun and secured byscrews; this lining tubewas introduced from the muzzle in a manner presently to be described. This form of gun was known as the " 1864 type converted into type 1868," the former pattern being wholly of cast iron. A few years previously the first serious efforts at strengthening this kind of ordnance had been made by adding rows of steel rings around the cast body (see Fig. 1, page 1 ante); these were muzzle-loaders. The pieces of this type made at a muzze-loaders. The pieces of this type made at a
course of manufacture, the lining tube when forced in from the muzzle could not be tightly secured ; attempts were therefore made to introduce it from the breech, but this was found impossible, and ultimately the practice was adopted of setting in the tube from the muzzle and securing it in place by special devices; the breech-screw was made in his tube. Both the 34-centimetre and the 42-centi解 netre-the ere reinforced with three steel jackets besides the ining tubes. The lengths of these larger guns varied from 21 to 22 calibres; they weighed 75 tons and threw ordinary cast-iron shells of 1430 lb . with an initial velocity of 1730 ft . ; the weight of the steel shells was 1760 lb ., and they held a bursting charge of about 22 lb . The 42 -centimetre guns above referred to were built upon the designs of the French Artillery Department, and at the State factory of Ruelle, the steel having been supplied and

Fig. 12. Frenct coast defence mortar ; 10 calibres.
length of the bore is 17 calibres. To about the the elements finished, at St. Chamond. They were same date belongs the cast-iron mortar shown in among the first of the large calibres manufactured Fig. 12 ; this is also of cast iron strengthened on the in France, when the change was made from cast outside, only with one row of steel rings ; there is no lining tube, but the bore is rifled and the length is equal to 10 calibres. This mortar, though now ancient, is practically the same as the 1883 type, largely mounted for coast defence, and the mode of construction is still followed in the State factories. The types of heavy guns made in 1870 were of $14,19,24,27$, and 32 centimetres bore 5.51 in., 7.47 in., 9.45 in., 10.60 in., and 12.60 in .) ; the bodies of all these calibres were of cast iron with a steel lining tube and outer steel rings. In the largest calibre the tube was made in wo lengths screwed together, and for all the sizes excepting the 5.51 in., there were two rows of reinforcing rings; in all cases the lining tube was screwed in from the breech. In a modified type produced a few years afterwards, the proportions of all the various calibres were the same as *Some of the information and illustrations here given Ledieu et Cadiat.
n France, when the change was made from cast were practically manufactured at private establish. ments instead of at one of the French arsenals, was of course due to the fact that these latter factories did not possess the appliances for producing and tinishing large masses of steel, while M. Thiers was about that time making partially successful efforts to break down the system that had been established for so many years, and by which France was wholly dependent upon its own imperfect practice for its ordnance.
At that time all the heavy guns in France, both or coast defence and for naval purposes, were produced at the Ruelle foundry. This factory was established in 1750, when the site was found to be peculiarly favourable for the purpose on account of the plentiful supply of high-class iron ore and charcoal that existed in the neighbourhood; in 1776 this factory became Government property, and enlargements and improvements have been ever since going on to adapt it in some measure
to the rapidly growing requirements of ordnance $120 l$. , of the same materials of which it was pro manufacture. The foundry at Nevers was established as late as 1830 , and in 1875 was of sufficient extent to turn out about 300 guns a year, varying in calibre from 5.5 in . to 10.6 in . It was at Ruelle that the first experiments were tried in France for rifling cast-iron ordnance, according to the plans of Treuille de Beaulieu, and special plant was laid down for the purpose ; as we have already said, the immediate occasion for such ordnance passed away, and so far as large calibres were concerned, the experiments went no further at the time. It is interesting to note, however, that it was at Ruelle, about the close of the Crimean War, that a cast-iron 8.6 in. gun was bored out to 11.8 in. and rifled with two grooves. The rapid improvements that were being made in the manufacture of heavy guns in England and Germany were rapidly leaving France behind, and the earliest efforts made to strengthen the French cast-iron guns with steel hoops having proved unsuccessful, considerable
posed to use for the larger weapon ; this gun was carefully finished, bored, and rifled, and was then tested to destruction, the number of rounds fired from it, before it failed, giving an indication of the value of the metal. Careful experi ments with the powder were also previously made by bursting with it a gun the strength of which was accurately known ; by this neans the strength of the metal to be employed could be very closely estimated. When this test had been passed successfully the metal was mixed with twice the quantity of other brands that had also been tested, and samples taken from this mixture were subjected to tests formulated by the French War jected We to do not know exactly what were the limits of strength insisted on, but at the present time the best cast iron made at Ruelle must show an elastic limit varying from 9.5 tons to 11.4 tons per square inch, and a breaking strain not inferior to 14.5 tons. This limit is approximately

Fig. 17.

Fia. 19.

Fig. 20.

Fia. 22.

Fig. 21.
Fig. 18.
prodectiles for french ordnance ; 1873.
downward; the casting was open from end to end, and the breech tube was afterwards introduced from the rear. On each side of the casting pit, two small shafts A and B were made, and from them channels were formed leading to the mould. A 3 -ft. head above the breech waa allowed for, and in casting, the channel $a b$ was first opened allowing the metal to flow into the mould unti it rose almost to the level of the second channel $c d$; pouring was then discontinued from the

Fig. 16. Mode of casting aun bodies at reelle. channel $a b$, and the metal was introduced from the pit B until the mould was filled and the casting completed. Charcoal was then piled over the pit and left for forty-eight hours, when the casting was removed and the operations of turning and boring carried out. The gun was subsequently placed in a brick annealing furnace, and heated to a temperature of 540 deg. ; the steel tube was screwed in and the whole allowed to cool ; afterwards the and the whole allowed to cool; afterwards the
outer rings were shrunk on, the first of these being the trunnion ring. The operation of rifling completed the gun, and it may be mentioned that for guns having a bore of an even number of centimetres, the number of grooves composing the rifling was equal to about double that of the centimetres of bore, while the number of grooves was one in excess of the centimetres of bore, if the latter were odd. Tables I. and II. on the next page give some of the general particulars of the French heavy guns in service in 1873, as well as comparisons with French and English ordnance of the same date.
Figs. 17 to 22 show the different kinds of projectiles used, and Fig. 23 illustrates a type of gun adopted in 1870 and manufactured as late as 1881 ; these are of 32 centimetre bore ; in the earlier model the lining tube was in two lengths of steel screwed in at the breech, but the form and dimensions illustrated are those of the 1881 type.

Fig. 23. Type of 32-centimetre french gun ; model 1870-81.
modifications were made and different types pro-
auced, the principal of which we have already duced, the principal of which we have already
described, and which gave very favourable results so far as the smaller calibres were concerned; the 6.3-in. guns especiallyshowed considerable powers of resistance, rising as high as 1000 rounds with 100 lb . projectiles and 19.8 lb . of powder. Such was the condition of heavy artillery in France at the time when the war broke out with Germany, and the Government factories were taxed to their fullest extent for the production of bronze field guns.

After the conclusion of the war the attention of French engineers and artillerists was very naturally devoted, as we have seen, to the question of improving heavy guns, cast iron still being the chief material employed, but reinforced in different and improved methods; the principal of these types we have just referred to. In a report on French gun manufacture, made by Lieut.-Colonel Reilly, C.B., in 1873, some interesting particulars are given of the methods then in vogue for making such guns, which were practically the same as those followed in Sweden, and we may refer here to this report, though it will partly take us back over the ground we have just to be described is practically that followed at the present time. The first step was to make a carefully finished model gun at a cost of about
the same as that imposed by the Washington Ordnance Bureau as early as 1863 , which specified that the iron employed should have a tenacity of not less than $30,000 \mathrm{lb}$. per square inch, and it is probable that with alf the care that was exercised in the selection and testing of the metals employed, that the results obtained could not have been much inferior. Rifling cast-iron guns that were not reinforced, was very quickly abandoned in France as being worse than useless; experiments proved that smooth bores which could resist long and continuous firing became, after rifling, practically useless. It was this experience that led to the adoption of a steel lining tube, which was at the same time well adapted to receive the rifling and to protect the cast iron from the immediate shock of the explosion. It was also found that the cast-iron guns when they exploded, always failed at the rear of the trunnions, and this suggested the adoption of the steel reinforcing rings outside the cast-iron body, from the breech to a point forward of the trunnions. Thus strengthened, the standard type of French guns adopted after the Franco-German War, and still in use for coast defence, was that shown in the illustrations, Figs. 13 to 15 (see page 54). The mode of casting the gun bodies at Ruelle is shown in Fig. 16. The mould was inclosed in an iron casing and placed vertically in the casting pit with the muzzle

As we have already stated, cast iron is very largely used for heavy ordnance in France at the present time ; this class is, however, only reserved for coast defence guns, steel being used exclusively for naval purposes and partly for land service. Economy of production and the facility and rapidity with which such guns can be made, are rapidity with which such guns can be made, are
suffiently good reasons for keoping them in service, especially considering the comparatively high duties to which they can be subjected. The working pressure which is recognised as being safe for cast-iron guns of large calibre, steel lined and reinforced with outer steel tubes, is $34,135 \mathrm{lb}$. per working inch, which does not fall far short of calibre made between 1875 and 1881 , and which vary from $39,820 \mathrm{lb}$. to $41,250 \mathrm{lb}$. French artillerists appear to look upon this very moderate increase in efficiency as dearly purchased at the five or six-fold cost of steel guns and the slowness with which they can be produced. The great objection to the use of cast-iron guns of large calibre is reported to consist chiefly in the narrow margin of safety which they offer; such guns may be fired a very large number of rounds up to the pressures we have just mentioned, but if, owing to any irregularities in the powder, the pressure be suddenly increased, the risk of the gun burst-

Table I．－Particulars of French Cast－Iron Reinforced Guns， 1873.					
$\begin{aligned} & \text { Nature of } \\ & \text { Gun. } \end{aligned}$	Calibres．	Total Weight．	Length of Bore．	Charge．	Weight of Projectile．
centi－ metre	in．	cwit．	in．	1 b ．	
14 16	5.456 6.484	52.28 88.42	89.88 118.27	8.88 16.5	41.11 99.3
16	6.484	tons	118.27	16.5	99.3
19	7.638	7.9	135.39	33.1	165.4
24	9.499	13.8	182.55	61.7	317.6
27	10803	21.7	183.70	88.2	476.4
32	12.6	34.5	204.1	138.09	760.5

Table II．－Comparative Efficiency of French，English， －Comparative Effciency of Fran German Guns， 1873.
and

Nature of Gun．						
	in．	lb．	lb．	ft．		
French	6.484	99.3	16.5	1312	1185	71.8
English	．	115	30	1561	1943	64.8
German	．． 8.796	123	25.35	1559	2073	81.7
French	7.638	165.4	33.1	1486	2633	76.5
English	．． 8	180	35	1413	2493	71.2
German	．． 8.236	217.2	87.48	1385	2889	77.1
French	9.499	317.6	61.7	1427	4484	72.7
English	．．． 9	250	50	1420	3498	69.9
German	．． 9.489	300.4	62.91	1812	3857	69.1
French	.. . 10.803	478	88.2	1978	6278	71.1
English	．． 11	835		1315	6415	75.5
German	．． 10.238	414.5	70.56	1385	6514	78.2
French	．． 12.6	760.5	138.60	1812	9077	68.4
English	．． 12	700	110	1300	8205	74.6

ing violently is very great．Apart from the bad moral effect which this source of danger produces on the men，there is，of course，a considerable amount of actual risk in handling such guns even with the greatest care；obviously the cure for this danger is to use as moderate powder charges as possible．The cost of producing cast－iron ordnance at the present time in the Ruelle factory is about 21l．per ton，and such guns without either lining tubes or jackets can resist a strain of 9500 lb ．per square inch on the surface of the bore；with one row of jackets this resistance is raised to $19,300 \mathrm{lb}$ ． per square inch，while with two rows of jackets it is again increased to $28,680 \mathrm{lb}$ ．，and with a steel lining tube to $45,930 \mathrm{lb}$ ．In other words，the rein－ forcing of the cast－iron body increases its strength four－fold．As for the cost of production the follow－ ing Tables give some interesting information Table III．shows the cost of production of the

Table III．－Cost Price of French Ordnance．

Nature of Gun．	Weight， including Breech Meoha－ nism．	Total Cost．	Price per Pound．
$\begin{array}{cl} 97 & \text { centimetre, } 10.63 \mathrm{in} ., \text { model } \\ 1864-66 & \because \\ \because & \because \end{array}$	$\stackrel{\text { lb. }}{45,100}$	$\underset{684}{\boldsymbol{\varepsilon}}$	3．64
27 centimetre， 10.63 in ．，model 1870．．	51，084	1188	5.58
$\begin{array}{cc}27 \\ 1870-71 & \text { centimetre，} \\ 10.63 & \text { in．，model } \\ & . .\end{array}$	56，100	1360	5.82
27 centimetre， 10.63 in．，model 1875 No． 1 ：	62，200	4308	
27 centimetre， 1063 in．，model 1881	63，030	3200	12.18

10．63－in．gun which alone has been constructed in all the different types from 1864 ．By means of the figures contained in this Table it is possible to estimate the cost of other calibres and patterns by multiplying the total weight of the gun by the price per pound in each particular type ；the cost of various other natures are given in Table IV．
Table IV．－Cost Price of French Guns of Various Culibres．

$\begin{aligned} & \text { 鞄 } \\ & \text { 苐 } \end{aligned}$		－		1881 （Steel）．		
	¢	$\boldsymbol{\Sigma}$	$\boldsymbol{\ell} \boldsymbol{\ell}$			$\boldsymbol{\ell}$
14 cent． 5.51	63.3	157.48	．．．．	．\cdot ．	－．	364.68
16 cent．）	108.80	258.84	．	（ Heavy ．．		564.44
19 cent．			1			
7.47 in ．	206.88	408.88				
24，cent．	488.76	800.52		．．．．		2005.44
$\begin{aligned} & \text { g7 cent. } \\ & 10.0 \sin . \end{aligned}$	684	1188	$1380\left\{\begin{array}{l}4308 \\ \text { No．} 1 .\end{array}\right.$	$\}$ ．．．．		
34 cent．！					$\}$	6368
13．3Pin．i	\cdots	2475．40		俍 $\left.\left\lvert\, \begin{array}{c}\text { Inger } \\ \text { tube } \\ \text { in one } \\ \text { length }\end{array}\right.\right\}$	$\left\{\begin{array}{l}21 \mathrm{cal} \\ 18.5\end{array}\right.$	5338 5880.40

－This was an experimental cun．

The present method of making cast－iron guns in France does not，as we have said，appear to differ largely from that we have already described as being followed in 1873．The material employed is，first is added a certain amount of other cast iron，the pro－ portions being regulated more by habit than by any actual rule；the metal is melted in a reverberatory furnace，and the casting is made in an upright pit， a core being used to save the work of subsequent boring and to harden the surface of the metal．The cannon is cast breech upwards，and the liquid iron is syphoned into the mould so as to produce a more solid casting．After cooling，the gun is placed in the lathe and is accurately turned and bored and otherwise made ready to receive the lining tube． After this has been done，the gun is placed ver－ tically with the breech upwards，and it is then heated equally along the whole length of the bore in an annular furnace ；the arrangement is shown by Fig．24，which also indicates the introduction

Fig．24．Method of Lining cast－iron auns．
of the lining tube．It should be mentioned that the two processes are not carried on simultaneously， the work of tubing being only commenced after the furnace has been removed．The portion A of the latter is filled with coke，and when this is well burnt it is applied around the gun，the amount of expansion being carefully watched，and as soon as a proper degree has been reached，the furnace is at once removed and the tube is introduced；this latter，carried on a cast－iron mandrel as shown in the drawing，is brought over the gun，and then by means of the levers the workmen rotate the tube，at the same time that they press it down wards，until they are stopped by the completion of the process，and the bedding of the tube against its bearings at the breech．

VICTORIAN GOLDFIELDS． Sandhurst．

（By our Sprcial Correspondent．）
（Continued from page 18．）
To give some idea of how quartz mining origi nated，and how it was regarded by diggers of that day，necessitates going back to a time a year or so before the rich alluvial diggings were beginning to give out．About the year 1854，a digger named E． M．Emmett brought to Commissioner Panton some white quartz which he had broken from an outcrop on what is now Hustler＇s line of reef．It was in appearance as though the pure white quartz had been dropped into bright yellow butter and picked out again，the gold was so thick in the stone． Emmett＇s mates would not join him in working this．＂Why should they ？＂they said ；＂here was much better stuff in the soil，and it only required digging and washing；gold could not be washed out
having．＂Subsequently，when sinking became deeper or when necessitated by other causes，the Commissioners increased the diggers＇alluvial claims until two men could take up ground to the extent of 20 ft ．square．In those days there was no law for quartz mining in Australia； nothing was known or thought about it．Emmett discovered this golden stone through making his camp fire on an outcrop of a reef ；the fire first split the stone and then he noticed the gold，though， when once found，there was plenty of the same kind of stuff to be seen all around．Doubtleas he and his mates drifted off in the exodus from Bendigo to search for other and similar fields，at any rate nothing was thought of the discovery． The Government officials used to amuse themselves on Sundays by going over to the hill and chopping off specimens full of gold to give to visitors when they came to Bendigo．The first man who took up a piece of ground on a quartz lode was an African black，a regular＂Uncle Tom．＂He occupied about 40 ft ．by 20 ft ．on this same outcrop，and made his living by breaking off specimens to sell to visitors．No one disturbed him in his occupation of the ground，although he held many times more than the law allowed，because no one considered it worth bothering about．Then two boys，generally thought to be runaway apprentices from a merchant ship，occupied a piece of ground on merchant ship，occupied a piece of ground on
Specimen Hill－now the spot where the deepest gold mine in the world（Landsell＇s 180）is being worked．At this place the gold was in a ferru－ ginous quartz．The boys fixed up a＂dolly＂and pounded the quartz in an old stump，and washed the finely broken stone．People regarded their work as a harmleas display of puerility and did not trouble themselves further．Eventually a German named Balerstead bought out the boys for $60 l$ ． Before he left that ground a few years afterwards he is maid to have taken gold to the value of over half a million aterling out of workings not much over 400 ft ．deep．Hustler，the man after whom the line of reef is named，bought out the African， and so quartz mining began to grow slowly． These men did not actually buy rights，there were no rights to buy，but the Commissioners of those days were the law ；they recognised undisturbed or unprotested occupation of ground，and ruled by equity more than by written codes．Hustler erected a mill consisting of three stamps，each about 4 ft ．high ；they dropped on a heavy iron grating made of something like firebars．The motive power was supplied by a man who turned a handle．The quartz was burned before being put through the mill．Some men then began to get out quartz from the outcrop of lodes and crush with dollies，or get it crushed by appliances such as Hustler＇s， who，by the way，charged $5 l$ ．per ton for crushing quartz．Then began attempts to mine quartz more systematically．Open cuttings were made on the outcrops of lodes，or underlies were worked down and the stuff hauled to the surface in hide buckets raised by a hand windlass．It was only in 1857 that anything approaching the modern crushing battery was introduced on the field，and even then the price of $5 l$ ．per ton was maintained for crushing．At the same time as these early efforts in quartz mining were being tried by some，another class of men began to displace the old digger ；these were the ＂puddlers．＂They were more settled and steady in their habits，and were contented to see three or four years＇work ahead with about an average earn－ ing of from $12 l$ ．to $15 l$ ．per week．They took all the stuff that the digger had turned over and put it into puddling machines and ground it into fine mud；a stream of water carried off the mud，and the heavier portions were cradled and panned off until the gold was saved．In this way all the soil which once covered the hillsides and gullies of Bendigo，was washed down the watercourses and spread over the plains for twenty miles below．It was in 1858－9 that the first aludge nuisance began， and it in still a question likely to cause grave trouble in the future．
As may be imagined，during those stirring years between 1851 and 1857，the enormous population suddenly coming together into the area of a few square miles，having no organised system，and without due regard for sanitation，brought as a con－ equence serious responsibilities to the Government ofticials remponsible for the maintenance of order． Enormous numbers of animals were slaughtered to supply food．At first this was done wherever butcher chose to set up his business，and the blood and offal were allowed to dry up，be carried down
(For Description, see Page 51.)
vanan -

Fig. 13. 32-centimetre brebchloading gun with cast-iron body, steel ringis, and partial stbel lining tube.

$<$
Fig. 14. 27 -centimbtre brebchlonding oun with cast-iron body, stbel ringe, and partial lining tcbe.

MODERN FRENCH ARTILLERY.

No. IV.

Strel Ordnance.

In the Aule-Memuire de l'Officier de Marine for 1889, by Ed. Durassier, the various existing types of French naval ordnance which are manufactured at Ruelle ${ }^{*}$ are described briefly as follows: The cannon Ruelle are described briefly as follows: The cannon
of the 1870 type are made with a body of cast iron lined with a stoel tube and reinforced outside with one or two rows of steel hoops. The guns of the 1875 model consist of a steel body with a lining tube and one or two rows of hoops, all being made of steel. The guns of this type are divided into two classes, short and long. Modifications of the types of 1870 and of 1875 differ only from the standard models in having enlarged powder chambers. Lastly, the 1881 type and its subsequent modifications are made wholly in steel with one or two strengthening jackets. All of these guns are breechloaders; the larger calibres down to 14 centimetres (5.51 in .) have an arrangement by which the breech mechanism is supported by a bracket. while for the smaller sizes the breech-block is carried in a ring hinged to the body of the gun.
manufacture tubes and bodies for guns in steel for calibres of 14, 16, 19, and 24 centimetres (5.51 in ., $6.29 \mathrm{in} ., 7.47 \mathrm{in}$., and 9.45 in .), especially for naval purposes. The 'Marie-Jeanne, a steel gun 24centimetre bore, which, during the siege of Paris, did such good service at Mont Valerien, was the with French steel, and this was made by the St. Chamond Company; these works can therefore claim to have taken the initiative in this branch of military industry." The weight and importance of steel ordnance mado in France rapidly increased, and several other firms followed the initiative taken by St. Chamond, but it was not until between 1875 and 1879 that the Creusot Works undortook the production of steel guns of very large size, following, in fact, in the footsteps of the works at Elswick, whence had been sent in the same works at Elswick, whence had been sent in the same
period, the first of the famous 100 -ton guns for the Italian Government; this development made France independent of Messrs. Firth and Sons, from whom it had been purchasing large quantities of gun steel. The only heavy ordnance in France to natures then made at Woolwich-were eight 16.54 -in.
further on the same lines, preferred to pursue a somewhat retrograde policy. During this period she was making a large number of experiments with different types of guns at Gàvre, and was gradually accumulating experience before committing the country to a vast and doubtfully useful expense. "The 1881 type of artillery is characterised by the suppression of the tube, the fixing of which in place was a very delicate and difficult operation for heavy calibres ; the body of the gun was made of tempered steel. Guns of 65 millimetres (2.56 in .) had no jackets excepting the broad ring carrying the trunnions. Those of 90 millimetres (3.54 in.), 10 centimetres (3.94 in .), 14 centimetres (5.51 in .), and the light 16 centimetres (6.29 in .), had one thickness of jacket. The 16 centimetres heavy type, the 24 centimetres (9.45 in .), the 27 centimetres (10.63 in .), and the 34 centimetres (13.39 in .), had two reinforcing jackets. In proportion to the increase of the bore, the thickness of the jackets relatively to the body of the gun was increased. The practice was followed, as far as possible, not to have greater thickness of steel than was employed in the type of 1875, though it was found that this practice could not be closely followed for very large

34-centimetre aun made of firth atebl.

16-centinetre and 65-millimetre steel gun, french standard type.

The first steel guns tried experimentally in France were undoubtedly those which had been purchased from Krupp of Essen, and also from Armstrong. In 1856, 12 -pounder smooth bore muzzle-loading guns made of steel were subjected to a long series of experiments. In 1857 two such guns, 4.88 in . bore, were tried in Paris, when it was impossible to burst or injure them by firing. In a report dated July 12, 1857, it is stated that one of these guns "was fired 1400 times with a service charge of $4.4 \mathrm{lb} ., 600$ times with a charge of 3.3 lb ., and 1000 times with a charge of 3 lb .; in all 3000 charges which it resisted perfectly." In a previous trial a gun of the same class had endured 1400 rounds with 4.4 lb . of powder, and 1600 rounds with reduced charges, but in a second series of trisls it burst at the fourth round with 6.6 lb . of powder. Another gun after 3000 of such rounds, was fired 20 times with 6.6 lb . and two balls, ten times with 6.6 lb . and three balls, and six times with 13.2 lb . and six balls. The gun remained uninjured at the end of these extreme tests (see Holley's "(Ordnance and Armour"). About 1862 this country was manufacturing built-up steel 300 pounders for France, but two years later the steel works of Assailly, now forming a part of the celebrated St. Chamond establishment, commenced the manufacture for the first time in France of steel tubes and jackets for heavy ordnance. It was stated in a recent number of the Temps "that thanks to the active collaboration and continued the Asailly Company has been able since 1865 to

- Some French guns, expecially $10 \mathrm{~cm} ., 16 \mathrm{~cm}$. (steel), and 27 cm . to 32 cm . (cast iron and steel), for coast de fence, were made at Havre by the Forges et Chantiers de
la Mediterranée.
and five $13.39-\mathrm{in}$. guns ($1875-1879$), constructed at the State factories from material supplied by pri bore, of which These, and six others of Creus $0 t$, and for three at St. Chamond, were the first of the largest steel guns produced in France, and with more or less important modifications, chiefly as regards reduced size, they have served ever since as standard types. The 37 -centimetre (14.57 in .) guns weighed 72 tons, and were designed to throw 1180 lb . projectiles with an initial velocity of 1960 ft . ; of the eight 42 -centimetre guns mentioned above (16.54 in .), two were 21 calibres in length, bodies were reinforced by three steel jackets, and they weighed 75 tons. The shorter natures were intended to throw a projectile weighing 1430 lb . with a velocity of 1730 ft .- a common shell con taining a bursting charge of 80 lb .-or a steel shell 1716 lb . with a bursting charge of $23 \mathrm{lb} . *$
It is scarcely to be supposed that, if France lagged behind this country in the matter of heavy ordnance, it was because she was not thoroughly alive to all that was going on in England, Germany or Italy, or that she could not, had she considered it expedient, have taken a front rank instead of following closely behind; but the practical solution of problems in heavy ordnance is a very costly one, which doubtless France-adopting the American policy-preferred to see practically studied by some other power, and although it was a matter of early necessity to answer the big guns of England and Italy with others as powerful, and possibly of greater ondurance, yet the experience with these large bores and heavy weights does not seem to have been very satisfactory, and France, not caring to venture
* Noureau Matéricl Naval, par MM. Ledieu et Cadiat.
|calibres. The great risk which is incurred in the use of steel forgings or blocks of very large dimensions arises from the uncertainty about imperfections in the interior of the metal. The progress that has been made in the manufacture of steel permits us to hope that the bodies of heavy guns permits us to hope that the bodies of heavy guns
will have sufficient elasticity to exert on the adjoining thicknesses of metal, a sufficient compression under the force exerted by the use of jackets of relatively heavy dimensions. Long experience and careful experiments appear to have made French artillerists stop at the 34 -centimetre gun as the maximum calibre; in its latest form this weapon has a weight of 53 tons, and is intended to give to a projectile weighing 924 lb . an initial velocity of projectile weighing
1970 ft ; such a projectile fired at short range will pierce a forged iron armour plate 29.14 in . thick and a wooden backing of 32 in."* Fig. 25 shows the type of 34 -centimetre gun of the type immediately preceding that to which the foregoing paragraph refers ; this particular piece has several peculiarities ; the body was manufactured of steel supplied by Messrs. Firth and Sons, of Sheftield. It is made in two parts, an inner tube extending the wholo length of the piece, that is to say, for 28.5 calibres for the long type, and 21 calibres for the short type, and a long steel jacket ; around this are shrunk two steel jackets made up of broad rings. As already stated, in the actual guns now manufactured the inner tube is often dispensed with, and the body is made of one piece of solid steel ; Figs. 26 and 27 indicate this type of construction; they represent, however, two smaller calibres, the former, the 16 -centimetre (6.29 in .) gun, and the former, the 65 -millimetre (2.56 in .) As will be seen, this smaller gun is not reinforced excepting by the trunnion ring, the thickness of the body being increased behind it towards the breech. The earlier type of steel gun, that is the 42 -centimetre bore made between 1875 and 1879, and already referred to, is indicated in Figs. 28 and 29 (see next page), but the precise arrangement of lining tube and jackets is not shown and the gun may be considered as obsolete. The following is a general description, gathered from the source we have already quoted, of the process now followed in the manufacture of French steel ordnance. The steel is cast in ingot moulds having the form of a truncated cone, sufficient length being allowed at top and bottom to cut off the ends where the metal is less likely to be perfectly sound; this casting is the first process in the manufacture of the body of the gun, and the lower part of the ingot corresponds *Nourcau Matériel Naval, par MM. Ledieu et Cadiat.
with the breech. After a first reheating the ingot is placed beneath the steam hammer and gradually roughed out into shape; this operation, however, is only completed after several reheatings; in the case of the 34 -centimetre gun there are at least ten or twelve. After the forging has been completed, the block is placed in an annealing furnace raised to a clear cherry heat and then allowed to cool very gradually; the first rough turning is then completed, which brings the block down approximately to it its final dimensions; it is necessary, however, to allow a margin, because
the operation of tempering, however carefully it the operation of tempering, however carefully it may be performed, is liable to distort the shape of
the block, and it is especially required to take out the slight curve which is almost always produced in the heating furnace before tempering. The next process is boring the block; for this purpose a crown drill is employed which cuts away the metal in an annular form, leaving a steel cylinder in the middle of the bore ; after this, the turned and bored block is again annealed and oil-tempered; the tempering furnace is vertical, and has to be of large dimensions to receive the bodies of the heavy calibres; it is afterwards plunged into a vertical bath of oil. The tompering is carried out at two operations; in the first of these the steel is raised to a clear cherry heat or about 1000 deg. Cent. ; in the second it is only brought to a dull red, corresponding to only brought to a dull red, correspemding to
600 deg. Immediately on being brought out of the furnace the tube is plunged into the oil bath, and remains there until it is quite cold. The practice of tempering in molten lead has of late found strong advocates in France, and many interesting experiments have been carried out in this direction, chiefly by the Chatillon et Commentry Company ; to these we shall take an opportunity of referring on another occasion. Test-picces are removed from the tube before and after tempering; these are discs cut perpendicularly to the axis of the bore, both at the muzzle and breech; out of them are cut the bars which are subjected to a series of carefully arranged tests for tensile strength, resistance to shock, bending, and elasticity. The Société de St. Chamond showed at the Paris Exhibition a large number of these test-pieces which had been subjected to the trials prescribed by the French Department of Marine ; these trials are as follows : The falling weight tests are made on bars 1.18 in. square by 11.81 in . long, or. 79 in . square and 7.87 in . long, the falling weight of the block being 39.6 lb ., and the maximum height of drop 108.27 in . The following Table gives particulars of the regulation tests: Table V.-Government Tcat for Gun Sted under a Falling Weight.

If the test-pieces have shown resistances equal to the prescribed amount, the tube itself is sub jected to a powder test before any of the jackets are placed around it. Care is taken that the strain thrown upon the tube by the explosion of the charge, is somewhat less than that corresponding to the elastic limit of the metal. The mode of car-
rying out this test is indicated in Fig. 30; the charge of powder is placed as shown between projectiles, which are encircled with copper rings so as to fit the bore closely; one of these projectiles is bored through to allow the passage of the firing circuit. The tube is subjected to three such rounds, one near the breech, one in the centre, and one at the muzzle. This powder test is objected to by many artillerists as unnecessary, costly, and very troublesome ; it is, we believe, likely to be abandoned. As shown in the engravings, the jackets are composed of a number of broad steel rings, which are made in a manner similar to the mode followed in producing railway tyres; they are rolled roughly into shape on a mandrel and afterwards forged The rings are carefully tempered in oil precisely in the same manner as the body of the gun, and they are subjected to tests for tension, compression, and bending in a similar way to the larger body of steel; the powder test is of course omitted, but in its place every finished ring is tested upon a coned mandrel, which is driven into the ring at one blow. Before this last test takes place, the rings are finished as nearly as possible to their ultimate size,
but they are distended by the mandrel in a propor- around the exterior of the body. The lining tube, tion of 2.5 millimetres per metre of diameter; after which is suspended over the bore, is run down they are withdrawn from the mandrel, they are rapidly as soon as the latter is sufticiently excarefully measured, and if the permanent extension panded, and when it is definitely in place the body exceeds 1 millimetre per metre, the rings are is cooled by a stream of water distributed equally rejected. All the various fittings of the guns, in- over the outer surface, commencing at the breech cluding the breech-blocks, are made of cast steel, and going upwards; this method of proceeding is carefully forged, oil-tempered and annealed; sample necessary, because as the metal near the muzzle is pieces are taken from the steel of which the various parts are made and subjected to test.
Although a considerable number of heavy guns in France are made without any lining tubes, some

Fig. 29.

42-centimetre steel gen ; obsolete type, 1875-79.
fig 30

diagram of powder test.

Figs. 32 and 33. Rifling machine.
of the types and calibres are provided with them; out. The amount of contraction given to the the process of inserting them is very similar to that reinforcing rings, as well as to the body of the gun described in a previous article for lining cast-iron from the lining tube, is equal to 1.7 millimetres per guns, only in this case the steel tube is introduced metre in diameter; the expansion obtained by at the muzzle, the body being suspended vertically, heating the metal to 400 deg . is equal to 3 millibreech downwards. The greatest care has to be metres per metre. In some cases it is found more exercised to heat the whole mass regularly through- convenient to make the gun body in two pieces, and out its length, since if this is not attended to the old method of joining the blocks together prior the expansion would be uneven, and the operation to inserting the lining tube, has been abandoned since would result in failure; the heat applied must 1886 in favour of the following process. The block also be kept carefully within certain limits that which forms the breech portion of the gun is finished, have been ascertained by experiments, and which, the forward end being formed as shown in that part if exceeded, would tend to set up molecular of Fig. 31 marked A; into this the tube is driven, disturbances in the metal which would affect its the forward end projecting, and when the whole strength ; the temperature which has proved to has cooled down, the second block which forms the be the safest, and at the same time sufticient for forward part of the gun is shrunk over the projecting expanding the metal, does not exceed 400 deg. part of the lining tube. The adjoining ends of the Cent. The gun is placed in a pit in communication blocks A and B are forced one over the other as with the furnace, from which air, heated to the shown in the diagram, the depth of the locking temperature above named, is delivered direct into shoulder at M being 1 millimetre; the lengths of the bore of the gun, and is also allowed to circulate the parts brought into close contact are drawn to

32-CENTIMETRE STEEL GUN AND CARRIAGE.
CONSTRUCTED BY MESSRS. SCHNEIDER AND CO., CREUSOT.

scale on the section. This process, however, is entirely unusual, as either of the large works of St. Chamond, Firminy, or Creusôt are capable of turning out solid blocks surpassing the specifications of the French gun factory, and large enough to form the body of the heaviest calibres made. The adjustment of the reinforcing rings, in one, two, or three tiers, is the next stage in manufacture; a slight projection is formed around the breech of the gun to serve as a shoulder, against which the first ring may be driven; the body of the gun is placed in a horizontal position, and the rings having been expanded by raising them to the necessary temperature, they are forced on one after the other until the first series is completed, when the metal is cooled by a plentiful application of cold water, and the surfaces are trued up perfectly for the application of the next row of the reinforcing rings. After these operations have been completed the gun is ready to be placed in the rifling machine, the general principle of which will be presently indicated. Fig. 38 above shows a finished 32 -centimetre breechloading gun and carriage made by MM. Schneider and Co., of Creusot.

As we have already stated in a previous article, the earliest experiments with rifled guns in France were carried out with only two grooves opposite each other; this was about 1855. Experience soon showed that this number was altogether insufficient to give the necessary rotation to the projectile, and the number was gradually increased, until, in 1870, as many grooves were cut in the bore as the latter was centimetres in diameter, or one in excess if the number of centimetres was unequal; the width of the lands was 10 centimetres. Subsequently the number was again increased, until in 1875 it was one and a half times the number of centimetres of bore, and again it was increased to twice for all calibres, the width system of rifing adopted for French naval guns system of rifing adopted for French naval guns
differs from that in use for land defences, and which is known as the Parabolic system. In this the development of a groove represents the arc of a parabola tangent to the generating line at the
creasing angle; this curve is extended for a considerable part of the length of the bore, and is then terminated by a uniform twist; by this system it is claimed that the advantages of uniform and of increasing twists are combined, the angle formed by the last portion of the rifling being sufficient to insure a sufficient rotation to the projectile whilst the gun is subjected to less strain as the shot is gradually started from rest along the parabolic portion. In naval guns, however, the parabolic curves of the grooves are followed throughout.

Figs. 32 and 33 are diagrams, and the following is a description of the rifling machine generally ema description of the rifing machine generally em-
ployed in France. An endless screw V, Fig. 32, which is mounted parallel to the axis of the gun as it is centred in the rifling lathe, gives motion to a carriage that supports the rifling bar R; at the end of this bar is the cutting head shown in section, Fig. 33, and which contains the rifling tool used ; if no movement of revolution is given to the bar R, it would cut-through the motion due to the screw V-a straight line. It is therefore necessary to give it a turning movement to an extent that can be carefully regulated, and this is effected by means of a pinion D which is mounted upon it, and which gears into the rack L, to which a movement can be given at right angles to that of the cutting bars. At one end of the rack is a pin B, which passes through a curved slot in a fixed former P, and the combined movement of the rack and of the driving screw V forces the cutting bar to turn to the curve desired, and which is varied at will by the form of the slot P. As it is necessary that the rifling tool shall only project from the head when it is making its cut, it is mounted in a slot in the head as shown in Fig. 33 ; the bar R is made hollow, and through it passes the rod T, the end of which terminates in an inclined head I. This rod isfree to slidetoand fro in the barR, and upon its position depends the projection of the cutter U or of its withdrawal within the head E. As will be seen from the section, the rod T is also hollow, and it, as well as the head E, is provided with a number of ports through which an abundant supply of oil or soap and water can be fed to the cutting tool. Fig. 34 shows the standard form of rifling
adopted, and by way of comparison earlier forms of French rifling are given. Fig. 35 shows the type of about 1861. The bore was rifled with three such grooves cut with an increasing twist, and into which entered three studs on the projectile faced with zinc. Fig. 37 is a sketch showing the relative position of these three grooves, and Fig. 36 is a similar section indicating the earliest form of French rifling.

Fig. 35. French riflina, 1801 Fig. 36.

Fig. 37.

FIRST AND SECOND FORMS OF FRENCH RIFLING.
Hitherto we have not referred to the breechloading mechanism which forms an all-important feature of modern ordnance; but in subsequent articles we shall describe in detail the standard systems as used for French guns, and compare them with the methods adopted by some other countries.

The Practiacl Engineer's Pocket Book and Diary, 1890. Manchester: Technical Publishing Company, Limited The Lighening Culeculator. A New Decimal System ap pliced to E s. ${ }^{\text {d. By C. H. B. DE Botwor, B.A. Lon }}$ don: C. H. B. de Bot wor, 10, Camden Studios, N.W [Prico 1s.]
Fire Brigade Drills, with Fints on Management, for the Bre of Superintendents of Volunteer and other Fir Brigades. Lon
Ground-street.
Rules and Regulations for Volunteer and other Fire Brigades. Leondon: Shand, Mason, and Co., Upper Ground-street.
Electric Lighe Installations and the Management of Acumulators. A Pructical Handbool. By SIR Davil
SALOwons Bart.. M.A. Assoc. Inst. C.E. New SALovoss, Bart., M.A., Assoc. Inst. C.E. New Edition, revised and enlarged, with numerous Illus trations. London: Whittaker and Co. and G. Bell and Sons.
Eisenbahn und Pust Communications- Kurte ,on Ocsterrcich Unjarn und den Balkenlündern, 1890. Vienna: Artaria

Nec South
Southern Wales Railumy Tourist Guide. Division 1 Southern
[Price Gd.]
Nenc South Wulles Railray Tourist Guide. Dirision II. Western and Northern Lines. Sydney : Charles Potter. [Price Gd.]
Electric Light; its Proluction and Usc. By John W URQUHART. With numerous Illustrations. Third Edition, carefully revieed, with large Additions. London: Crosby Lockwood and Son.
American Railroad Bridycs. By Thronore Cooprb. New York : Engineering News Publishing Company. Graphical Statice. Twoo Treatises on the Grophical Cal culus and Reciprocal Figures in Graphical statics. By
Leigi Cbevona. Translated by Thonas Hidson LCigi Cheyona. Translated by Thonas Hed. The Ether Theory in 1839 in the True Theory of the Leyden Jar as Eistablished by Moulern Electriral Discoreries. Part I. By Jaxes Jonnstonk. Edinburgh: James Gemmel.
Professional Papers of the Corps of Royal Enginecrs. Edited by Captain W. A. Gale, R.E. Royal Engi neers' Institute. Occasional Papers, Vol. XIV., 1888 Chatham : Royal Engineers' Institute; London: Hamil ton, Adanss, and Co.
Modern Flour Milling; a Hamillool' for Miluers and o'hers interested in the Grain and Fiour Trades. By Willins
R. Voller. Gloucester: Published by the Author, Albert Flour Mills. [Price Gs. Gd.]
Turning Lathes: A Manual for T'chnical Schools and Apprentices. With 194 Illustrations. Third Edition. Edited by Jayes Lcein, B.A. Colchester: Britannia Company, Britannia Works.
The Colonial Year Book for the Year 1890. By A. J. R. TrevDrli C.M.G., with an Intruduction by J. R Serler, M.A. London: Sampeon Low, Marston, Searle, and Rivington, Limited. [Price Gs.]
Al.] 1s.]

MODERN FRENCH ARTILLERY.

No. V.

Breechloading Mechanism
We now come to a consideration of the methods employed in French practice for opening and closing the breeches of guns of all calibres, and this part of the subject will be most usefully considered by reviewing the different standard systems employed by other countries which, with one notable exception, have all followed, with nore or less modifications, the method first worked out in practical shape by France. This is the interrupted screw system, in which the breech-block or plug used to close the rear end of the bore, is cut with an interrupted or stripped thread, so that its surface presents an equal number-six or eight of smooth segments, and as many threaded ones. The seating in the bore of the gun to receive this plug, being cut in a corresponding manner, it follows that the block can be thrust into the seat, the threaded parts of the former being opposite the smooth segments of the latter, and when home a partial revolution of the block fixes it in position, and, with the various devices which are employed, makes a secure and gas-tight closing to the breech. To go back to the commencement, in the year 1842 Captain Treuille de Beaulieu submitted a report to the Minister of War, on rifled guns, in which a screwed breech-block is suggested. Certainly a part of the original credit for this must be given to the United States, where, in 1853, a joint patent was taken out by J. P. Schenkl and A. S. Saroni, for an interrupted breech block. Two years after, the English Government purchased six guns from a manufacturer at Buston in which the breech was closed upon the same principle, but they were absolutely useless owing to the crude and imperfect manner in which the work was carried out. Figs. 39 and 40 illustrate the arrangement; a thread was cut in the enlarged end of the bore i, and a corresponding screw on
the breech-plug "; three longitudinal grooves were
then planed out of the screw cut in the bore, and then planed out of the screw cut in the bore, and breech-screw. A collar was attached to the latter on which were mounted two small pinions d working in a rack upon the face of a bracket on each side of the gun, and by which the breech-block was run in and out and supported. This crude plan was very speedily replaced by the independent work of the earlier French artillerists into a practical form which contained the elements of the system now so generally employed. One other invention in the carly days of breechloading guns may be

AMERICAN INTERRUPTED BREECH SCREW ; 1853.

Figs. 42 to 46 , on the next page, illustrate with tolerable accuracy the system of breechloading followed in France in the Government gun factories, and designed by the officers of artillery of marine. The principal parts of the mechanism consist of the breech-block, which is made of steel, and on which is cut a screw thread, which is removed over three equal segments of $\mathbf{6 0}$ deg. ; the recess in the bore in which this block engages, is provided with three corresponding segments of screw threads and blanks. It is evident from this arrangement that one-sixth of a turn, which is always given from right to left, suffices to disengage the threaded portions of the block and seat, and to bring those on the former, opposite the smooth portions of the latter ; when in this position the block can be either withdrawn from, or introduced into the bore. In guns of moderate calibre this operation can be performed by hand, but in the larger natures, some mechanical appliance is necessary, such as hydraulic power, toothed gearing, or belt transmission. Secured to the end of the body of the gun, to the right of, and below the axis of the bore, are two brackets or supports for a vertical spindle which serves as a hinge, and two winches secure a console or bracket which can be swung to and fro upon this hinge. Two handles fixed to the rear of the breech-block as shown at P serve to withdraw the bluck from the bore, and deposit it withdraw the block from the bore, and deposit upon the console, after the block has been libe-
rated by one-sixth of a turn of the lever M; the rated by one-sixth of a turn of the lever M; the form of the console S is curved to provide a fai seating for the breech-block, and has two raised guides formed upon it. After the latter has been withdrawn clear of the gun and is resting upon the console, the latter can be thrown back upon its hinge pin B, so as to clear the bore of the gun and allow the projectile and charge to be placed in the powder chamber. For smaller guns these operapowder chamber. For smaller guns these operations lie well within the power of the men during
the work, but for the heavier calibres mechanical assistance, as above stated, has to be provided Thus in the heavy 32 and 34 centimetre cannon, the breech-blocks of which weigh from 1500 lb . to 2000 lb ., while the system of swinging brackets is preserved, various devices are added to facilitate the manipulation and to insure safety. These devices in the calibres just mentioned comprise an

- Official Treatise on the Manufacture of Guns and Text-Book of Strvice Urdnance.
endless screw for turning the loaded console backwards or forwards; a system of multiplying gear for entering the block or withdrawing it from the gun, and a rack and pinion for turning the block so as to open or close the gun. In the largest calibres, however, these appliances are insufficient, and the various movements are obtained by means of an endless chain and a hydraulic winch ; moreover, the temporary support of the breech-block is not attached to the gun but to the platform of the turret on which it is mounted. It is evident that in swinging the console fastened tc the breech to and fro with its heavy load, considerable care must be exercised lest the block should fall from its somewhat limited support, and to prevent this the movement of the console is rigidly determined by a spring latch L which forms an efficient lock, either as soon as the block is swung into the position for receiving this block, that is when it is in contact, with the breech of the gun, beneath the block seating, or when it is turned back out of the way.
Various safety devices are added to the breechblock mechanism to prevent the starting of the block from its seat when it is once in position, and to render premature firing, either from accident or carelessness, impossible. Fig. 43 shows a device adopted to secure the former object ; it consists of a spring latch V set in a recess cut in the breech of the gun, and so arranged that while the starting lever M can pass freely over it in going from the vertical or unlocked position, to the position marked in dotted lines and which represents the breech-blook secured, it prevents the lever from passing towards the left and so opening the gun. Another safety device consists in the bolt \mathbf{E} which slides to and fro in a recess marked on Fig. 43. This bolt serves several purposes; it covers the fuze and prevents the gases from escaping outwards; it is provided on the underside with longitudinal grooves which, in the event of a premature explosion of the fuze, conduct the gases laterally towards the side of the gun; and it prevents premature firing because the detonator remains premature firing because the detonator remains
covered so long as the breech. block is not exactly in its proper place. The movement which it is necessary to give to this bolt in order that it may cover and uncover the detonator, is controlled by a groove formed radially with the bore in the back of the gun c^{1}, Figs. 43 and 44 ; at the upper end of this groove is an enlargement into which the end of the bolt falls when the breech-block is locked. When the breech is completely closed, the point of the bolt falls into the enlarged part of the groove, and it can be lifted by hand far enough to permit the gunner to expose the nipple on which the cap is placed; when the bolt is released the end within the groove falls upon the lower face of the enlargement, exposing the cap to the action of the hammer, and the gun can then be fired. If the starting lever is turned towards the left, the end of the bolt travels up the inclined plane, joining the enlargement with the goove, and the displacement thus produced is sufticient to cover the vent with the bolt so that it is possible to fire. Figs. 44 and 45 are enlarged views of the bolt mechanism and its groove. In some cases the hammer which fires the charge, is mounted upon the bolt and is actuated by a spring; this involves the introduction of additional safety appliances, so that the firing block becomes quite a complicated piece of mechanism.
In order to make a gas-tight joint between the end of the breech-block and the gun, some efficient system of obturation is necessary. That shown in Fig. 42 is practically similar to the Broadwell ring, which will be described hereafter in connection with the Krupp system of breech closing ; this ring, which rests against the face of the breech-block and takes its bearing in an arris cut round the edge of the bore, is expanded under the action of the explosion and forms a very efficient gas check.
sion and forms a very efficient gas check.
De Bange Breech-Closing Mechanism, 1877.Figs. 47 to 50 show the earliest type of the De Bange system as applied to an 80 -millimetre (3.15 in .) field gun. At the date of this design (1877) no attempt had been made to adapt the plan to large calibres, and for small weights the bracket arrangement for supporting the block when withdrawn, was unnecessary ; its place was taken then, as well as in the present types, by a ring hinged to the back of the gun, and through which the block is free to slide. The diameter of the powder chamber in the gun illustrated is 3.33 in., the breech-block seat being enlarged to 3.78 in , as a maximum diameter, and to 3.52 in . at
the threaded portion. The pitch of the screw is through its axis to receive the spindle of the mush7 millimetres, and the threads are cut with a flat of room-headed obturator, the form of which, as well 5 millimetre. The jacket surrounding the inner as of the gas check pad, are shown in the section tube of the gun projects beyond its rear face, and is Fig. 47. The spindle is drilled through for the finished with a chamfer, while the rear face of the fuze, and the opening in the mushroom head is inner tube is recessed for a portion of the circum- bushed with copper. The end view, Fig. 48, shows ference of the breech seating to receive a corre- the breech in its locked position, and it will be seen sponding projection on the hinged ring. This latter from this figure that the lower end of the lever fits

FREN(H standard bheech mechanism.

the de bange system of breech closina; 1877.
is attached by lugs on one side, to a hanger formed on into a recess cut for it in thejacket of the gun(Fig. 50), the jacket of the gun ; the inner diameter of the ring while on the right-hand side is also a recess formed is such as to allow the breech-block to slide freely to to take a latch fastened on the ring. The action and fro when it is turned to the unlocking position. of the mechanism is sufficiently obvious; on the The front end of the block is somewhat reduced in lever being raised, it can be used to turn the block diameter to fit the powder chamber, and on the through one-sixth of a revolution, when it will pass rear is a curved handle by which the breech can through the ring, bypulling on the handle at the back be moved to and fro, and lugs at the top of the of the breech-block. On releasing the latch of the
block for attaching the lever. The block is bored ring the whole mechanism can be thrown back clear of
lat

THE DE BANGE SYSTEM OF BREECH -CLOSING.

Figs. 51 and 52. De bange system of breech-closing for field auns; 1889.

detail of je bange carrier king.

Fig. 56

the bore, and after the gun is loaded, a reverse operation closes the breech. Figs. 51 and 52 are perspective views of the latest form of the De Bange mechanism as made by the Cail Company. These views explain very clearly the forms and relative positions of the different parts; they also show that the modifications from the earliest type are quite insignificant, a sufficient proof of the importance of the De Bange invention and the perfection of the details when it was first produced. The only point to which attention may be directed is the manner in which the ring is hinged to the gun. A recess is cut out of the jacket on the left-hand side, and a hole is drilled through to receive the hinge pin, a distancepiece being introduced between the ears on the ring to make the joint solid. The form of the latch on the ring is also shown, as well as the locking recess for the end of the lever.
Figs. 53 to 55 are diagrams showing the arrangement of carrier rings and the latch which forms an important detail in securing the breech mechanism of small calibres; the latter is attached to the ring and has projections which catch into corresponding recesses in the outside jacket of the gun. It conrecesses in the outside jacket of the gun. It con-
sists of the following parts: the latch bolt C sists of the following parts: the latch bolt C
mounted on a pin d; the outer projection a, the lower projection b, the heel c, and the springe. It will be seen from the diagram that this latch is carried in an enlargement of the ring immediately opposite the hinges a, a, and that the heel r projects within the opening of the ring. When the man operating the gun throws up the main lever and turns it to the left, releasing the screwed portions of the breech-block from the corresponding sectors of the breech-block from the corresponding sectors
of the seat, he at the same time depresses the heel c of the latch by forcing it against an inclined path
of in the breech-block; this operation turns the bolt upon the pin d, compresses the spring e, and raises the upper point a of the bolt, at the same time lifting the projection b into a catch in the jacket of the gun. By this operation the carrier ring is free from the screw and for the moment is secured to the breech of the gun. Now if the lever be pressed down, the cam upon it acting on the carrier ring forces the breech-block, out loosening the gas check, which has been expanded hard against the wall of the powder chamber by the previous explosion. The breech-block can then be drawn out of its seat through the ring by which it is supported until it strikes against the stop f; during this backward travel the heel of the latch e slides along the face of the breech-block until it falls into a recess cut in the latter, releasing the spring e, throwing down the lower projection b, and thus releasing the ring from the breech of the gun, and at the same time attaching it to the breechblock. For closing the breech the operations thus described are reversed.
The De Bange obturating primer is illustrated by Fig. 56. It consists of the case a which passes through the centre of the breech-block; of a spindle d with an enlarged head c, which fires the charge; of a gland b within the tube a, and within which moves the wire d. The gland b is secured to a tube $!$, between the head of which and the base of the tube a, surrounding the gland b, is some plastic packing; the head g is screwed to the tube h which projects from the rear of the breech-block; this tube h has a long slot s formed in one side and within it, the termination of the wire d looped into a ring k, is free to slide. A bell-crank hung to the recess in the rear of the breech-block passes through the slot \times and engages in the ring k; the other end of the bell-crank serres as a connection for the lanyard. On pulling the wire d the fuze is fired, the pressure of the powder gases forcing out the plastic packing, and the enlarged head c sealing the opening in the gland b.

SHIPBUILDING AND ALLIED INDUSTRIES

The indications at the close of the year promised Tue indications at the close of the year promised
continued activity in the shipbuilding trade, but the first month of the new year closing to-day will be noted for the almost entire absence of new contracts. In Scutland only four vessels, which, combined, do not make up 2000 tons, have been booked by shipbuilders, and as great a dearth of orders is experienced in the north-east coast, and very few inquiries are in the market. But, after all, the shipbuilders do not complain; on the other hand, they welcome this "lull." At the annual meeting of the Tyne Shipowners' Assotion the other day, the Earl of Ravensworth spoke the sentiments of shipbuilder as well as shipowner, when he expressed the hope that the enormous output would receive a check. Thare are various reasons for the
the early part of this century, who built and operated one on the Hudson River from Hoboken to New York City

Professor Denton made a comparison between the performance of the Orange, a side-wheeler with low-pressure beam engines, and the Bergen, a double-end propeller with triple-expansion engines. The original plan had been to have this paper read on the Bergen, and thus combine a practical illustration with the presentation, but the Bergen resented this method, and finding every other resource to fail, decided to arrange her boilers so they could not be used, and womanlike, she broke her stays, and that settled it.

This paper, which was extremely interesting, we shall shortly publish in extenso.

The Singer Sewing Machine Works.
The next day the party took the Laura M. Starrin again, and started for Elizabethport to see the Singer Sewing Machine Works. When it was arranged to take the Bergen, Dr. Henry Morton the genial president of Stevens Institute, had, with his usual hospitality, tendered the Society a lunch on board, and the change of boat brought no change of heart to our good friend, so the Society had the pleasure of enjoying a most excellent feast, and thinking of Dr. Morton in the pleasantest manner possible. On arriving at the dock of the Singer ewing Machine Works, the party were met by the officers of the company and conducted through a fine park to the works, which were carefully in spected, and the various labour-saving devices thoroughly appreciated. In a manufactory where so many pieces are constructed and put together, even a slight saving in each aggregates to a large amount. A general description of the works is as follows: They are located on Newark Bay, and the main factory building has a frontage of 230 ft . on First-street, with a width of 60 ft . The Trumbull street annexe to this building is 800 ft . long and 50 ft . wide, the whole being four stories in height. Below this building, on Trumbull-street, are the cabinet and box factories, each 200 ft . long and three stories high. On the north side of the grounds, adjoining the Central Railroad property, are the forging and foundry building, together making one continuous building 1430 ft . in length. The foundry alone has an area of $2 \frac{1}{2}$ acres in one open floor, and the total floor area of the works is 18 acres. On the opposite side of First-street is the Singer Park (private), which extends to Second street on the west, and occupies the space between Trumbull-street and the Central Railroad of New Jersey, covering about 3 acres. The first Singer machine was made in Boston in 1851, and the firm of I. M. Singer and Co , the late Mr. Edward Clark being the "Co.," was formed during that year, the business being carrried on in New York City. After various changes of location, necessitated by an increasing business, the company came to water facilities, being distant from New York City about 12 miles by rail and about 14 by water. The company have their own steamer, and consider they save considerably by its use ; they also load their machines in cars at their sheds, and thus avoid cartage, and reduce breakage due to handling to a minimum
The plot occupied by the works contains 32 acres, and has a dock frontage of 800 ft . There are ove four miles of railroad track within the yard, on which two switching locomotives, owned by the company, are kept constantly employed. The works consume annually about 15,000 tons of coal, which is received direct from the mines, via Central Railroad of New Jersey, without rehandling. Gas for lighting and manufacturing purposes is made on the premises, and the company have their own fire department, thoroughly organised and equipped, including a system of electric fire alarm signals. They also have a complete telephone exchange con necting all departments with the main office and with each other.
On these premises the Singer Company have also extensive boiler works, entirely separate from the buildings already enumerated, in which they manu facture for the Babcock and Wilcox Company, of New Jersey, their patent water-tube boilers, of which over 40,000 horse-power were constructed during the year 1888. The steam power used in the works is supplied by twenty-two of these Bab cock and Wilcox boilers.
The works give employment to an average of 3300 individuals, and have a capacity of 1500 sewing
machines per day. They, of course, consume a very large amount of raw material, the daily melt of pig iron alone varying from 75 to 80 tons.

A bout 40,000 dols. in wages is weekly distributed Elizabeth
The present works were first occupied in the fai of 1873 . Since that time various additions have been made, the last one being finished in the spring of 1888
The Singer Company have thoroughly systema tised the manufacture of sewing machines, intro ducing and successfully using automatic machinery in every department, and with their large corps of well-trained employés, the work in their immense factory goes on with the precision and regularity of clockwork. In the factory everything is scrupu lously neat, and every provision is made for the safety, health, and comfort of those who spend their time within its walls, even the various rooms are heated by overhead pipes, and the ventilation problem has been carefully studied and solved with judgment. The emery wheels are protected, and the general air of the employés was that of industrious and skilful workmen, who were satisfied with heir position and appreciated the care their wants had received at the hands of their employers.

The visitor to the works will find that while close and exhaustive study has been made of the strictly useful and practical, the beautiful has not been forgotten. Through the yard are scattered trees which overshadow well-kept lawns, thickly dotted with flowers, and, indeed, the grounds, on which a force of men is kept continually employed have more the appearance of a park than a factory yard.

The officers of the company are: F. G. Bourne, president; William F. Proctor, vice-president C. A. Miller, secretary ; E. H. Bennett, treasurer.

Some of the machinery proved to be of the greatest interest, especially that used in making the needles. The tasteful designs painted on the machines, such as bouquets of flowers and other decorations, are put on very much like the decaliomaine process, and this work is done by girls. The name of the company is put on in a similar way The old method was to have these painted by hand Some of the cabinets containing the machines attracted attention from the richness of the wood and on inquiry we found they were made of cotton wood. They had a high polish and a beautifu grain. The question as to who used all these machines came constantly to the lips of the party, only to learn the company had a large series of works at Glasgow, Scotland, although they do not urn out as much as the Elizabethport ones.

After spending a delightful day and being very nuch impressed with the wisdom, skill, and fore thought of the officers, the party re-embarked. The return to New York was charming, and the statue of Liberty seemed never to have looked so attrac ive. The principal topic was the coming World's Fair in New York City, and a wish that the foreign attendance might be large. On this point, it might as well be understood, that New York City will hold a World's Fair in 1892. It will not affect the ques ion at all where Congress may designate the ocation. We shall have our Fair, it will leave any other so far in the shade that visitors will not are to even see it.
The next day concluded the session ; it was marked by a pleasant reunion on the City of Paris at a lunch of many old friends. The Inman Com pany had kindly sent the invitation to the Society, and many of the Inman officials took this occasion o meet the engineers they had taken such good care of during the summer. All agreed that this was the line to sail on, one of the impromptu speakers saying that he did not care to sail on any other, not even that line who boasted they never
had lost a passenger, and he added, "except by had lost a passenger, and he added, "except by
starvation." Of course, Captain Fred. Watkin starvation. Of course, Captain Fred. Watkins
did the honours of his beautiful ship with his usual race, and when his health was proposed it was remarked, that he always had the World's Fair on board, and the American woman came in for her hare of the praise
The New York Committee really felt theirlabour were not in vain, and if the expressions of their guests were sincere, the guests felt they had profited by the visit.

Germay Steam Navigation-A German line of steam hips has commenced running between New York and Vhips has

MODERN FRENCH ARTILLERY. No. VI.

Breechloading Mechanism-continued.

United States Morlifications of the French System. Figs. 57 to 73, pp. 135, 136, illustrate very completely the details of the French system of breechloading mechanism, as adapted to an $8-\mathrm{in}$. steel rifle of the lass made for the Cnited States Government at the West Point Foundry, New York. The four principal parts of the mechanism are: (a) the breech-block (b) the spindle, the inner end of which carries the mushroom-headed obturator bolt; (c) the lever and (d) the swinging bracket. The breech-block which of course is of tempered steel, has smooth surfaces, over three sectors of the circumferenc, the other three sectors being threaded; the 1 st hread at the back of the block is left complete to arrest the block at the proper point of insertion when the threads are in a position to engage, one sixth of a turn completing the locking; this opers tion of turning carries the block forward .125 in and forces the obturator pad into place. The diameter of the chamber of this gun is 9.5 in., which corresponds to the diameter of the end of the breech-block in advance of the threads. The maxi mum diameter of the breech-block seat is 11.06 in. that measured to the bottom of the threads is 11.04 in., and to the top of the threads is 10.50 in. The total depth of the block seat is 12.5 in ., of which 11 in . are occupied by the threads (see Fig. 61). The form of thread is shown in Fig. 62; is commenced about .8 in . from the rear end of the block, the pitch being .75 in . Two of the sectors have the threads interrupted by a recess nearly 1.5 in . wide, and of the form shown in Figs. 62 and 63 ; this is to receive the corresponding projections on the bracket to hold the block When the breech is open. The rear of the block is ormed with a tapered recess (Figs. $\overline{5} 6$ and 65), 3.65 in . deep, 6 in . in diameter at the back, and 5 in . at the front part of the recess ; further the block is bored through with a central hole, 2.46 in . in dianeter, to admit the spindle carrying the obturator head. Curved handles (Figs. 63 and 64) are formed symmetrically on each side of the block, and these, with the lugs to which the lever is attached, are cut from the solid piece of which the breech-block is formed. The spindle is clearly shown in Fig. 58. formed. The spindle is clearly shown in Fig. 88 .
The mushroom head is 2.9 in. thick, and its normal position is somewhat less than 3 in . in front of the block, which allows space for the gas check; the diameter of the head is 9.4 in., allowing a clearance of .1 in . in the powder chamber. The spindle. where it joins the head, is 2.995 in . in diameter, and passes into the hole in the block, which for a length of 5 in . is 3 in . in diameter. The enlarged size of the spindle is only 2.75 in . long, beyond which it the spindle is only 2.75 in . long, beyond which it is reduced the rear, which is of two diameters, as shown. Two adjustable nuts and a copper washer are placed on this part of the spindle within the recess in the block. The position of these nuts is regulated by the thickness of the gas check pad, and they hare reverse threads to lock the spindle. Beyond these nuts the spindle is extended for 3.65 in, and with a reduced diameter of 2 in . The spindle is drilled on its axis from end to end, to form the vent ; the diameter is .2 in., except in front, where the mush room head is bushed with copper and the diameter is reduced to .10 in . The lever is pivotted and sup ported between the handles of the block by a bolt that passes through the lugs provided (see Fig. 58), and around which the lever revolves. This lere has three functions: When the handle is upright it serves to revolve the block, either for locking (unlocking; when the block is turned to the locked position, and the lever is thrown down, the eccentric at its hinged end enters a recess cut in the body o the gun and locks the block; and when it is desired o draw out the block after it is unlocked, a down ward pull on the end of the lever forces the eccen ric against the breech of the gun, and starts the block. When the gun is closed and locked, the posi tion occupied by the lever is that shown in Fig. 58, the lower part of the handle being caught by a spring attached to the bracket. The form of the帾 he eccentric when the gun is locked in Fig. 59.
The swing bracket is that part of the breech mechanism which serves to support the block when it is withdrawn from the gun, and on which it can be thrown back out of the way for loading. The bracket is attached to a hanger of the form show in Figs. 68 and 69 , which is bolted to the breech of
the gun; the top and bottom of this hanger has pro jections through which passes a hinge bolt and secures the bracket to the hanger ; the latter is shown in position in Fig. 57. The bracket is a strong casting, the end where it is secured to the hanger being 9 in. deep, and drilled for the hinge bolt to pass through. The bearing table is 12 in . long, and is curved accurately to the form of the breech-block; at
the outer sides are two projecting guides of a clutch form. The level of the table coincides exactly with that of the bottom of the breech-block; the positions of the guides correspond with those the positions of the guides correspond with those
of two grooves cut longitudinally in the block. of two grooves cut longitudinally in the block.
Flanges beneath the table serve to sirengthen the Flanges beneath the table serve to strengthen the
bracket and to carry the latch, which is an im

end of the latch, which is formed with a catch rises over a curved stop screwed into the breech of the gun, and when the bracket is in its final position the latch falls into a recess in the stop, and keeps the bracket fixed. When, however, the breech-block is fully withdrawn, the outer end of the block strikos a tinger projecting from the other end of the latch, lifts it from the recess in the stop, and as soon as the bracket is turned, the bent spring throws up the latch, engaging the finger with the end of the block, and holding the latter part. When the bracket is again swung round for closing the gun, the reverse action takes place.
The operation of the breech mechanism is as

DETAILS OF SWING BRACKET FOR AMERICAN BREECHLOADING GUN.

CANET SYSTEM OF BREECHLOADING WITH RACK AND QV゙ADRANT.

portant detail in the mechanism. When the bracket position, Fig. 57, and it being desired to reload, the is turned so that the inner face of the table is in lever is pulled upwards through an angle of 180 deg., contact with the breech of the gun, and the breechblock is unlocked and started, it can be pulled out by hand upon the bracket, the guides controlling the movement and holding the block steady. The latch, which is shown in position in Figs. 57 and 58, and separately by Fig. 71, serves the double purpose of holding the bracket fixed, while it is in position to receive the breech-block, and afterwards tion to receive the breech-block, and afterwards
of keeping the latter in its place when the bracket is swung back. The latch is hung on a pin about the middle of its length, this pin passing through the flanges underneath the table; a bent spring underneath the table presses on the top of the latch swung round to receive the breech-block, the inner
same time releases the bracket, which can be swung back clear of the bore. After the charge has been inserted in the chamber, the bracket is turned back, and on coming into position is locked by the latch, which at the same time releases the breech block. The lever is then raised, and the block is slid forward into its seat until the first thread strikes its bearing ; the lever is then turned through onesixth of a revolution, and the block is locked, the operation advancing it through .125 in. ; the lever is then pulled down till the lower end is caught in the spring. It should be mentioned that in this arrangement a gas check fuze is employed, and that the obturator pad is made of the usual mixture of asbestos and suet.
The Canet System.-The company of the Forges et Chantiers de la Mediterranée, which has, during the last few years developod, near Havre, a very large and important gun factory under the general direction of M. Canet, has perfected a system known by the name of the director of the works, and which comprises many important modifications of the comprises many important modifications of the
standard French system. The guns of large and small calibre made at these works are known by the general title of Canet ordnance, and as we shall see later on, they possess many details of novelty and interest. Contining ourselves for the present to a general description of the breech mechanism, we find that the Canet guns both for naval purposes and for coast defence, are fitted with breechloading devices on the stripped screw system, but intn which many improvements have been brought. Obturation is always effected by means of a moditied De Bange plasticwad of a special form, which is designed to avoid any hardness or inconvenience in working, and which in varying sizes is used for guns up to the largest calibres and highest powers. In certain cases the stem of the head holding the wad in place is fixed, and the head instead of being mushroom shaped is in the form of a ring, but with this latter type the stem is movable with the head; by this arrangement, while the same pressure on the breech-block is maintained, an increased pressure is thrown upon the obturator, and as a necessary consequence, a better obturation is secured with low charges - a very obvious advantage. The mushroom is attached to a movable stem, which passes through the axis of the breech-block. This stem, which is drilled through for the fuze, is formed at the rear through for the fuze, is formed at the rear
end with an enlarged opening, the front being end with an enlarged opening, the front being
bushed; the spindle changes its position according to the extent to which the obturating pad is flattened. Firing the gun is effected by means of a bolt composed of two parts, one of which slides in a groove in the ordinary manner ; this circular groove is cut on the rear face of the breech and the tail of the bolt engages in it. The other part of the bolt, following the axis of the gun, is connected to the first by a slide. This second part of the bolt can be made fast with the movable stem by a piece, in which, however, it is free to slide easily when it follows the movement of the bolt. From this arrangement it follows that that portion of the bolt mounted on the movable stem is free to follow all the movements of the latter, while it remains at the same time in connection with the first part of the bolt on which are mounted the percussion and safety devices. The firing the percussion and sarety devices.
mechanism consists of a hammer which is movable mechanism consists of a hammer which is movable
around an axis, and carries at its tail end a small roller which is controlled by a spring. The detent is formed by a special forging, on which are placed four fingers ; these are mounted parallel to the axis of the breech. The first finger carries the ring of the firing cord, the second takes a bearing when the hammer is lifted, and under the action of a spring, in a lateral recess cut in the side of the wing of the hammer, prerents the latter from falling upon hammer, prerents the latter from falling upon
the fuze. The third finger opposes this by stopping against a projection on one side of the hammer, and so prevents this latter from coming in contact with the percussion fuze, if from any cause it becomes released without having been pulled by the firing cord. It is only when this cord is drawn that the projection is removed and allows the hammer to strike the fuze. The fourth finger, which engages in the groove of the breech-block, Which engages in the groove of the breech-block,
prevents all movement of the axis of the detent prevents al movement of the axis of the detent
so long as the bolt is not in its proper position and the striker is not exactly in range with the fuze. It is only in such a position, when the fourth finger is opposite an enlargement made for this purpose in the slide of the bolt, that the detent can act and the hammer fall. During
the rotation of the breech-screw the tail of the simple and no springs are employed. The pivot g ferent parts, and especially on account of absence bolt remains engaged in the groove formed in has mounted upon its lower end a pinion f which is of complicated mechanism. The system has been the body of the gun, and the bolt is thus kept turned by means of an endless screw upon a shaft adopted by several countries - Japan, Greece, absolutely fixed. It is only when the breech is worked by a crank. The various operations can be Chili, dc.-both for naval and cosst defence guns. completely closed that the enlargements made at performed either by hand, by means of hydraulic Figs. 77 to 80 are perspective views that show the the upper and lower ends of the groove allow the apparatus, or by belt transmission. The breech- breech mechanism in various positions.
bolt to be raised for putting the fuze in place block is fitted with a triple safety apparatus, which Guiet's Quick-firing Guns.--Figs. 81 to 85 . The and to be afterwards lowered to make ready for makes it impossible to fire the gun: 1. Until the speed at which these guns can be fired is due to two firing. This system of breech-block is thus pro- screwed part of the breech is not completely home reasons ; to the simplification in the operations of vided with a triple safety apparatus, because the in the bure. 2. So long as the bolt is not imme- opening and closing the breech, and the use of metal

breechloading mechanism ; the frenct system modipied by the united staten
gun cannot be fired : 1. So long as the breech is not closed. 2. So long as the striker is not exactly over the fuze. 3. Firing is impossible except by pulling on the firing cord. All parts of the mechanism are moreover very simple easily cleaned and maintained, while the working of the system presents very little inconvenience. The working lever pulls over, and is formed with a cam which, when the breech is closed, holds the block firmly locked. When the threaded sectors of the block are turned so as to be clear of the threads in the bore, by pulling over the lever the same cam which takes a bearing against the body of the gun assists in slackening the obturator in the usual manner. We shall illustrate this mechanism later on

For the manipulation of the breech mechanian in heavy calibres, special appliances belong to the system above described, which allow the man serv ing the gun to carry out all the various operations by means of a single lever which is turned only in one direction. The rear face of the breech-block has fitted to it a toothed sector a (Figs. 74 to 80) gearing into a rack b carried upon a movable nut c mounted on a vertical screw d which is attached to the console. When the screw d is turned, the nut i rises and the rack acting upon the toothed sector a turns the breech-block. When this movement has been carried sufticiently far to release the threads of the block from those in the bore, the nut is stopped against the upper bearing of the screw, which then actuates the pinion e which is cut with helicoidal teeth, and attached to the nut c; this pinion gears into a rack cut in the side of the breech-block and withdraws it from its seat in the bore. Whilst this screw is being turned the tail of the bolt that carries a small roller rises up a curved path fixed upon the back of the gun. As the bolt rises, the tail of the hammer comes against a stop that forces the dog to lift and produces an automatic safety arrangement. When the screw has arrived at the end of its travel, the pinion e butts against the extremity of the threaded portion and becomes fixed. A bolt i upon the console of the gun is thrown out and the whole system swings around the axis g attached to the gun ; the arrangement of this console bolt is very

diately over the fuze. 3. Unless the firing is per- cartridge-cases, which contain the charge, and are formed by drawing on the lanyard. The great attached to the projectile, so that both are inserted advantage of this system is that it can be manipu- in the chamber at one operation. These of course lated in every position of the gun by only one man, are features common to every system of quick-firing and by turning a crank always in the same direction. gun ; but they are, as we shall see, carried out in The operations are moreover easy and rapid on the plan we are about to describe, in a manner preaccount of the convenient arrangement of the dif- senting many original details. The breech-block

THE CANET SYSTEM OF BREECH-CLOSING MECHANISM.

Figs. 77, 78, 79, and 80. Canet system of breechloading witu rack and qitadiant.

THE CANET SYSTEM OF BREECR MECHANISM FOR QUTCK-FIRING GUNS,

Fig. 83 is of the orlinary interrupted screw type, and the mechanism operating it has to perform three distinct movements ; unlocking the block from its seat ; withdrawing it to the rear; and turning it back clear of the breech upon the hinged console which supports it. These operations are effected by turning a horizontal lever d which works from right to left. This lever is mounted on a pivotted beargroove cut in the lower part of the console and in the same plane as the axis of the gun. As soon as this lever is turned, a pinion f mounted upon it, gears into a bevelled tooth segment e forming part of the block of the gun, and causes the block to turn through one-sixth of a revolution, that is to say until it is free in its seat; upon the same lever is a small arm at the end of which is

mounted a roller 9 , and at the moment that the block is released this roller enters a lateral recess h in the console. By continuing the movement of the lever d, this roller abuts against the end of the recess and serves as an adjustable fulcrum for the whole system ; the sliding block k, on which the lever is mounted, is then displaced and travels in the groove made in the console (see Fig. 85) ; this movement, of course, causes the breech-block to be withdrawn from its seat in the gun-the actuating mechanism being fast with the breech-and as the
console is in a position to receive the block, it take its bearing upon this latter; when it is out of the gun the sliding block is at the end of its travel and becomes fixed; by continuing the movement of the lever, force is exerted upon the console, which is caused to turn around on its axis or hinge pin which is placed at the side of the breech. The extracting device acts automatically; it consists simply of two claws held by springs recessed one on each side of the breech-block with the ends projecting in such 8 manner that when the block is returned to its place and forced home, the ends of the extractor bars close over the rim of the cartridge, the empty case of which is withdrawn with the block the next time the breech is opened. It is evident that by reversing the operations thus described, the block is returned to its seat and the breech is closed ready for firing. It should be mentioned that the console is fitted with a safety latch which secures the bracket both when it is thrown back or brought round to the closing position, and that this latch works automatically without the use of springs. We shall later on illustrate this mechanism and some of its modifications, as well as the firing device shown in Figs. 83 and 84.

COMPOUND PASSENGER LOCOMOTIVE.

We publish this week a two-page engraving of a which was exhibited at Paris last year by the builders, the Société Suisse pour la Construction de Locomotives et de Machines, of Winterthur. The engine is one of 3 series constructed for the Jura-Berne-Lucerne Railway, of which line Mr. R. Weyermann is the locomotive superintendent.

As will be seen from our illustrations, the engine is of the outaide cylinder type with inside frames and valve gear, the latter being of the Stephenson pattern. The cylinders are respectively 17.7 in . and 25.2 in . in diameter with 25.6 in . stroke, and have the valve chests placed on the top as shown in Fig. 4. The valves are worked through rocking shafts, as in American practice, and the valve spindles are flattened at one part of their length so as to enable them to spring described by the upper end of the rocking lever arm to which they are connected.
As will be seen from the dimensions above given, the capacities of the high and low-pressure cylinders are in the ratio of 1 to 2 very nearly, and in order to secure as nearly as possible an equal distribution of work between the two cylinders under varied condi tions of working, the Von Borries system was adopted of proportioning the two reversing arms so as to give different grades of expansion for the two sides of the engine when " notching up." Thus, in the engine under notice, the corresponding cut-offs in the two cylinders with
ure as follows:

Percentaycs of Cut-Off
$\begin{array}{llllllllll}\text { High-pressure } & \ldots & 13 & 20 & 31 & 41 & 51 & 60 & 76 \\ \text { Low } & " & \ldots & 20 & 29 & 42 & 51 & 59 & 66 & 80\end{array}$
By this means a very equal distribution of the work is effected.
To facilitate starting, the engine is fitted with Von Borries automatic starting valve, the construction of which is shown by the detail views, Figs. 5 and 6, annexed. This apparatus is placed at the junc-
tion of the intermediate receiver or connecting pipe, with the large cylinder, the steam leaving this intermediate receiver at R and passing off to the lowpressure cylinder at C. If the engine stops with the high-pressure piston on a dead point, so that the engine cannot start in the ordinary way and no steam can be exhausted to the low-pressure cylinder, the live steam passes from the high-pressure valve chest through the pipe t and acts upon the lower end of the spindle K, the pressure thus exerted raising the valve S and closing it on its seat S_{1}. When the spindle K is thus lifted it uncovers the small openings $e e$, and live steam can then pass to the low-pressure cylinder, thus starting the engine. As soon as the engine gets to work the exhaust from the high-pressure cylinder of course raises he pressure in the intermediate receiver, and this presure acting on the valve S, overpowers the pressure of he live steam on the lower end of the spindle K and orces the valve off its seat, thus allowing the exhaust teain from the high-pressure cylinder to pass to the ow-pressure, the engine then continuing to work compound. To insure the valve S being forced right down into the position in which it is shown in Figs. 5 and 6, there is provided a small piston p working in cylinder a, the upper end of which is in free communication with the receiver. The area of this piston is uch that the pressure of the receiver steam on it is sufficient to overpower the pressu

The boiler, which is worked at a pressure of 156 lb . per square inch, has a shell made of Krupp's "flusseisen," which has a tensile strength of from $21 \frac{1}{2}$ to $25)^{2}$ tons per square inch, with all elongation of 18 to per cent. before fracture. The longitudinal joints butt strips. The inside firebox is of copper, and the tubes are of steel with copper ends next the firebox. The chief proportions of the boilers are as follows :

Heating surface : Firebox..
Tubes .
Total
Square Feet.
80.7
1223.8
1304.5
16.1

Firegrate area

The boiler is furnished with a large dome in which placed the regulator. The steam pipe, it will be noticed, passes through the top of the harrel close to the dome, and is then led externally to the valve chest of the high-pressure cylinder, while the exhaust from the high-pressure cylinder traverses an arched pipe in the smokebox on its way to the low-pressure cylinder. It will be noticed that the joints of the steam pipe
coned joints, each secured by a single central bolt. coned joints, each secured by a single central bolt.
The engine is, as we have already stated, of the "Mogul" type, and the six-coupled wheels are 4 ft .11 .8 in . in diameter, while the diameter of the single pair of carrying wheels at the leading end is 3 ft .0 .6 in . The rigid wheel base is 12 ft .1 .7 in ., while the total wheel base is 20 ft ., the position of the leading axle being controlled by radius links.
The springs of the coupled wheels are arranged beneath the axle-boxes, those of the middle and hind wheels being connected by compensating levers, while other compensating levers connect the front ends of the prings of the front pair of coupled wheels with the hind ends of the springs belonging to the leading axle Moreover, the two leading springs are connected by ransverse compensating beams which transmit their oad to the centre of the cross-frame connecting the two leading axle-boxes.

The construction of the framing is clearly shown by ur engravings, and calls for nospecial description. A strong transverse stay of box section secures the necessary rigidity at the point of attachment of the cylinders. The engine is fitted with the Westing. house brake, which acts on the two hind pairs of couples wheels, and the fittings generally are neat and sub stantial. The engine weighs 391 tons empty, and 432 tons in full working order. It is accompanied by a four-wheeled tender which carries 1560^{j} gallons o water and 4.2 tons of coal, the weight of this tender being 10 tons empty and 21 tons full.

We may mention in conclusion that the Mogul type of locomotive was introduced into Switzerland by the Société Suisse in 1875, since which date it has been adopted for heavy pussenger service on many Swia railways. We give on page 140 a perspective view o another engine built in 1886 by the Société Suisse. This engine is of the same general type as that we have been describing, but is without a dome and is fitted with outside valve gear of the Walschaert pattern, instead of inside gear, as is the case with the engine shown by our two-page illustration. The Westinghouse com pressed air reservoirs also are placed on the side foot plate instead of under the foot-plate at the trailing end.

THE MANCHESTER STEAM USERS' ASSOCIATIUN: ITS SYSTEM OF INSPECTION AND GUARANTEE.

To the Editor or Enginerring.
Sir,-My attention has been called to a letter by Mr. Michael Longridge, headed "The Charlesworth Boiler Explosion," which appeared in your issue of the 17 th ult., the latter part of which it is thought might lead to misapprehension as to the course the Manchester Steam Users' Association took with regard to a range of six boilers placed under its inspection in the year 1873, the 1874 tubes of one of which collapeed on september 4, prevented my replying before the preas From Mr Longridse ster
Association had approved might be inferred that boilers, whereas the Aseociation had given warning of the danger incurred in working them at so high a pressure as that to which they were subjected, more especial y with regard," to the furnace tubes, and decined to "guarantee" the boilers until these tubes were strengthened with encircling hoops or other appropriate
This is not the first time that a question has been raised
in your columns with regard to the "guarantee" of these in your columns with regard to the "guarantee" of these your issue of June 2, 1882, a letter appeared from. Mr Charles of June 30 and July 14, 1882, and I do not know that I can do better than quote from the first of those letters on this occasion.
"The facts of the case are briefly as follows: The boilers, which consisted of a range of six of the Lancashire type, were insured by the Boiler Insurance and Steam Power Company, as stated by Mr. K. B. Longridge at the inquest connequent on the explosion, from October 27, 1866, to October 27, 1872 , at a pressure of 65 lb . on the square inch, though this pressure was exceeded in working. They were March 1873, when arrangements were at once made for Maving, the boilers laid off one or two at a time made for to the convenience of the owners, so that they might receive a series of 'entire' examinations. In this way t wo of the boilers were examined 'entirely, on Saturday, March 15, 1873, two others on the following Saturday March 22, and two more on Saturday, March 29, thu completing the whole series. In reporting on these examinations it was at once pointed out that the furnace tube which subsequently collapeed, as well as the tubes of three of the other boilers, were too woeak for the pressure at which they, zoorked, ana that the Association with regard to their safety until they were strengthened with encircling hoops. This was repeated to the owner of the boilers ajain and again. The owners received these representations most courteously, but unfortunately they were advised by their boilermakers, who were an eminent tirm, that the boilers were perfectly safe, and were persuaded not to apply the hoops recommended In consequence of the Association's urgency, however they ordered a new engine to reduce the pressure, and ultimately resolved on taking out the entire range of boilers and putting in new ones. This resolution wa with flue tubes strengthened now a fine range of boilers, ivets with flanged seams and working safely at 75 lb on the square inch. At this pressure they have now been guaranteed 'for about eight years, and it is fully exyected that the Association will be able to renew that "guarantee" rom year to year for at least twenty-five years from the day on which the boilers were laid down, and in all probability for several years longer.

- It was while this new range of boilers was being put in that the weak furnace tube previously condemned in the Association's reports collapsed
"This is a very brief statement of the case. I woul gladly send you copies of all our reports and corretake up several columns of your space. Enough, how. ever, I trust has been said to show that the Manchester Steam Users' Association did not approve lhese boilers, but, on the contrary, refuscd t, guaronfee them, and gave warn-

[^0]: *See La Revue d'Artilleric, October, 1889.

